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Project description 
Introduction 
The world has entered an era of design. Through their phones and tablets, everyday people interact with 
digital design constantly: mobile apps are disrupting every industry --- healthcare, transportation, busi-
ness, finance, agriculture, education. They serve as vehicles for collecting data and deploying interven-
tions at unprecedented scale, and have catalyzed major technological and social innovations in the last 
decade. 
  
While tens of billions of dollars are spent on digital design each year, it remains an endeavor mostly 
based on intuition and opinion, as well as one in which results achieved are only weakly correlated with 
capital deployed. Why? The central challenge in design has always been tying the complex and vast 
space of decisions to measurable outcomes. A/B and multivariate testing are useful tools for understand-
ing causal relationships between design choices and key performance indicators; however, these tech-
niques require large number of active users to achieve statistical significance in a reasonable amount of 
time, as well as the engineering resources to build out alternative solutions to test. While companies like 
Google, Amazon, and Facebook can effectively employ A/B testing given the size of their user base and 
engineering teams, most organizations are relegated to running inconclusive tests for months on the sim-
ple design variations they can afford to build.  
 
This proposal introduces a platform that automatically captures and aggregates design and interaction 
data across mobile apps without any code integration, allowing designers to run tests at scale over 
apps they do not own or did not build. With the millions of mobile apps available for download today, it 
is likely that any given UX problem a designer encounters has been tackled by a number of existing apps. 
By leveraging crowd workers and this rich space of extant apps, the proposed platform will allow design 
teams to cheaply explore and test a wide range of satisficing designs. 
 
The platform allows users to find relevant third-party apps and define performance and usability exper-
iments. It crowdsources these experiments over the apps, automatically capturing design and interaction 
data during usage, computing specified metrics, and presenting designers with visualizations and com-
parative analyses that tie design decisions to outcomes. Designers can use these data-driven insights to 
motivate their design decisions and communicate with stakeholders. In addition, by aggregating recent, 
equivalent tests together and performing meta-analyses, the platform can go beyond an individual result 
and present users with accrued design knowledge --- current trends and best practices.  
 
The proposed platform comprises three technical innovations. First, we introduce scalable systems for 
capturing design and interaction mobile app data streams, and combining them into representations that 
can be post-processed by machine learning and knowledge discovery techniques. Second, we describe 
how to develop data-driven models to semantically tag important UI/UX elements in the collected data to 
support design exploration, and aggregation within and across tests. Third, we sketch interfaces for find-
ing relevant designs, defining experiments and metrics, and presenting aggregated results and predictive 
insights to users.  

Background and Motivation 
Throughout the mobile app design process, designers seek to understand the artifacts they build and the 
experiences those artifacts confer on users. In the exploration phase, designers attempt to evaluate the 
relative merits of potential satisficing designs. During the execution phase, designers endeavor to detect 
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usability issues before design specifications are sent to the engineering team. Once an app is implement-
ed, designers attempt to optimize user performance metrics and benchmark them against competitors. 

To gain this understanding, designers employ a number of testing techniques which generally fall into 
one of three categories: A/B, usability, and analytics-driven testing. The types of questions that can be 
answered depend on the usage context of the testing technique (natural or scripted), the types of data it gen-
erates (qualitative or quantitative), and whether it supports comparisons with different versions of an app 
and its competitors (Figure 1). 

A/B and Multivariate Testing 

A/B testing is used to answer 
questions of the form “which 
design performs better?” A 
typical A/B test might involve 
dividing user traffic amongst 
two experimental conditions 
(A and B), logging usage be-
havior, and looking for statisti-
cally significant differences in 
key performance indicators 
(KPIs) such as conversion rate 
between the two conditions. 
Multivariate testing, similarly, 
allows designers to test multi-
ple variables at once to deter-
mine if any combination pro-
duces an optimal design. The 
goal of A/B and multivariate 
testing is to understand causal 
relationships between design 
decisions and business goals; hence, companies have widely adopted these techniques for continuously 
optimizing digital design, replacing existing designs with new ones if they perform better. The tradeoff is 
that, while A/B tests can determine if one design performs better than another, they cannot help designers 
understand why (King et al. 2017). In addition, A/B and multivariate tests require large user bases to 
achieve statistically significant results in reasonable amounts of time, and the engineering resources to 
build out the variations to test. 

Usability Testing 

Usability testing studies how users perform representative tasks in an app: whether users can understand 
a design and use the app as intended to accomplish their goals. Usability testing helps designers answer 
questions like “is there a usability issue with a particular user interaction flow?” and, if so, “what is the 
issue and why does it exist?” Usability testing leverages qualitative data collected through direct behav-
ioral observation (e.g., researchers watching people use the app) and self-reporting (e.g., surveys) to pin-
point usability issues and understand user satisfaction. Unlike A/B tests, usability tests can leverage par-
tially functioning prototypes and as few as 3-5 users (a technique known as heuristic evaluation) to identify 
usability issues with a design (Nielsen & Molich 1990). Accordingly, usability testing is widely used to 
iteratively refine prototypes before implementing apps. While usability testing can involve quantitative 

Figure 1. A testing technique’s usage context, the data it generates, the 
types of comparisons it enables, and the stages of the design 
process it supports determine the types of questions it can an-
swer.  
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measures that capture user performance metrics such as task completion rate and time, achieving reason-
able confidence intervals can be costly given that data collection and aggregation is performed manually 
(Nielsen 2001). 

Analytics-Driven Testing 

App analytics data is generally geared toward business and marketing intelligence, but it can also be use-
ful for user experience research (Cardello 2013). Since analytics platforms usually log all user interaction 
events, they can answer questions such as “How do users spend their time in the app?” Understanding 
characteristics of natural usage informs design strategy, helping designers recognize emergent use cases 
and prioritize features. Similarly, log data can help identify usability issues on critical conversion paths 
by capturing points of significant user drop-off, although extracting these insights from large volumes of 
logs can be challenging for designers without significant technical assistance. 

Practical Use Cases and Challenges of Design Testing 

These three classes of testing are complementary and can be used in conjunction with one another to as-
sess and improve user experience. For example, usability testing can be employed to understand the what 
and the why behind an issue identified via app analytics; after implementing a fix for the issue, A/B test-
ing can confirm that the design fix works. 

While each of these techniques provides value to designers and helps elevate the practice of design be-
yond guesswork and intuition, there is often a gap between what is theoretically possible to test and what 
is tested in practice. In theory, A/B testing allows users to compare large design variations; in practice, 
companies test small changes because the engineering effort required to build divergent alternatives will 
be wasted if the change is not adopted. In theory, usability testing supports quantitative, comparative 
analysis, allowing designers to benchmark user performance metrics against their competitor’s apps; in 
practice, running usability tests with sufficient participants to achieve statistical significance is prohibi-
tively expensive given the manual effort required to collect and aggregate data. 

This gap between theory and practice highlights the central challenge of design testing: current testing 
techniques send designers along gradients to local optima. Existing techniques force focus on small, 
incremental improvements and fail to put tests in the requisite context to answer the fundamental ques-
tion of app design: “given the space of possibilities, which solution performs best?”  

Closing the Testing Gap 

This lack of global context is particularly unfortunate given the millions of mobile apps across thousands 
of categories that have been built, released, and tested at scale by users. In this world of ubiquitous inter-
action design, it is likely that any UX problem a designer encounters has already been considered and 
solved --- perhaps countless times --- by apps that have come before. What is missing is a way for de-
signers to locate these existing solutions and understand their performance.  

This proposal closes the testing gap by introducing a crowdsourced platform to open-sources mobile 
app analytics. This platform will allow designers to cheaply collect detailed design and interaction data 
at scale over Android apps they do not own and did not build, and correlate this data with quantitative met-
rics and qualitative feedback. The platform’s goal is to become a self-sustaining resource for design 
knowledge: aggregating fine-grained design analytics at scale to identify successful trends and best prac-
tices.  
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While current testing and analytics platforms require source code instrumentation, the proposed platform 
supports both scripted and in-the-wild testing with zero app integration: it requires no access to code, and 
can be deployed by any user over any app in the Android store. This somewhat miraculous capability is 
made possible by a novel data-capture system that inserts itself between a user and an Android app via a 
browser or the OS, snapshots design and interaction data during usage, and combines the two data 
streams into a multi-modal representation of user traces. The system reduces the cost of capturing struc-
tured app interaction data by an order of magnitude: to around fifty cents a tester from $50 on a usability 
testing platform.  

Designing with Open-sourced Mobile App Testing 
 
Suppose Jane is prototyping a food logging flow for a diabetes management app and wants to understand 
the space of performant and navigable designs. Jane can use the proposed testing and analytics platform 
(Figure 2) to drive her design process. 

First, Jane must find a set of relevant apps to analyze. Using the platform’s topical search interface, Jane 
searches for “diabetes” and finds a number of existing diabetes management apps such as mySugr and 
Diabetes:M. Since the search interface also allows her to run queries with functional semantic keywords 
that describe the tasks supported by an app,  Jane also searches for “food logging” and finds food jour-
naling apps such as Lose It! and MyPlate which also contain food logging flows. This type of scalable, 
functional search gives designers superpowers, allowing them to find apps in distal categories that con-
tain relevant design features.  

Based on her search results, Jane creates a comparison set containing both diabetes management and food 
journaling apps to measure user performance on their food logging flows. She defines a scripted usability 
test, where she instructs crowd workers to log the last meal they ate using the app they are assigned from 

Figure 2. The platform’s testing pipeline comprises four stages: creating a comparison set, defining tests, de-
ploying them to crowd workers, and aggregating the results. At each stage, the platform stores gen-
erated data (gray boxes) that can inform future design tests and drive data-driven models of design. 
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the comparison set. Additionally, she specifies a set of open-ended survey questions to elicit feedback 
around the task experience. Jane also sets up a second test to collect in-the-wild analytics over a compari-
son set comprising just the diabetes management apps. By examining natural usage, she hopes to learn 
how often people actually log their meals while tracking their glucose and insulin levels.  

After defining the tests, Jane deploys them on the platform. For the scripted tasks, the platform recruits 
crowd workers from Amazon’s Mechanical Turk and allows them to complete the tasks on a device of 
their choosing through a web app emulator. As the crowd workers perform their chosen tasks, the plat-
form captures design and interaction data streams in the background, and processes them into multi-
modal representation of user traces. For the in-the-wild tests, the platform engages crowd workers who 
use the diabetes management apps that interest Jane and have installed the platform’s monitoring app on 
their devices. Through this monitoring app, the platform prompts these crowd workers to participate in 
Jane’s trial, and collects analytics.  

Once the tests complete, Jane can review aggregate metrics and visualizations over the collected user 
traces, as well as the collated qualitative feedback. The performance results from the first test reveal that 
the meal logging flows found in the food journaling apps have statistically higher completion rates than 
those in diabetes management apps. Jane uses the platform’s novel interactive flow visualization to quickly 
identify and inspect interaction traces where users could not finish the task. Jane finds that many of these 
users had a hard time initiating the food logging flow in the diabetes apps, and notices that these medi-
cally-oriented apps have information dense UIs. In contrast, Jane observes that the meal logging UIs in 
the food journaling apps are more minimal, although the flows themselves involve more steps. Moreover, 
the qualitative feedback indicates that crowd workers found the task “fun and easy” on the journaling 
apps. 

Usage analytics from Jane’s second test reveal that only 5% of the diabetes apps’ users record meals on a 
daily basis. Based on aggregated analytics data from these apps, the platform states with a 95% confi-
dence-level that users spend 83% of their time engaging with the apps’ bolus calculators to compute insu-
lin doses, which Jane notices require users to input food they are about to consume. Based on the data 
from the two tests, Jane decides to build a meal logging flow that is integrated with the insulin treatment 
flow. She hypothesizes that this strategy will reduce the overall complexity of the app and allow users to 
derive the benefits of meal tracking automatically whenever they are computing insulin doses. 

Scenario Meta-Analysis 

This scenario illustrates how understanding the performance of existing solutions can transform the de-
sign process. The platform’s ability to capture design and interaction analytics over any existing app --- 
and semantically analyze and aggregate behavior over current and previous tests --- allows Jane to make 
large-scale design decisions backed by data before implementing expensive solutions.  

The next three sections of the proposal describe the technical innovations necessary to enable the novel 
data-driven interactions discussed above. First, we describe how the platform can capture interaction and 
design data from any Android app without requiring source code instrumentation. Second, we describe 
how to train functional semantic embeddings over the components of mobile app design, which allow the 
platform to meaningfully classify and aggregate user interactions. Finally, we describe how functional 
semantics can power novel search, aggregation, and insight generation over the collected user traces. 
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Zero-Integration Approaches to Crowdsourcing Mobile App Analytics 
 
This genesis of this proposal is a scalable system for capturing the diverse, heterogeneous data streams 
that comprise mobile design, and merging them into representations that can be post-processed by ma-
chine learning and knowledge discovery techniques. While data-rich domains like text and natural imag-
es each comprise one single stream of data (words and pixels, respectively), design is much more com-
plex. Mobile design, for instance, is described simultaneously through structured source code, visual hi-
erarchies, rendered screenshots, and programmed interactions that respond to user behavior. This repre-
sentational complexity is both a bane and a boon: while mapping between data streams to produce a uni-
fied representation can be technically challenging, the different encodings of the same concepts often 
provide stronger semantic understanding than a single kind of data alone. 

Prior Work: Capturing and Representing Design and Interaction Data 

Previous attempts to mine design data have analyzed apps both statically and at runtime. Static methods 
inspect code or binaries, and cannot capture design components such as result lists or feeds that are gen-
erated while the app is running (Alharbi & Yeh 2015). Dynamic approaches mine design data at runtime, 
and explore different states in an app by programmatically interacting with its UIs (Azim & Neamtiu). 
Dynamic mining agents, however, can be stymied by UIs that require complex interaction sequences or 
human inputs. Encoding heuristics for handling common UIs can help, but these heuristics are difficult to 
scale given the diversity of UIs and apps. 

Since humans use prior knowledge and contextual information to effortlessly interact with complex UIs, 
we have developed human-powered exploration to mine design data from mobile apps. Our approach is 
manifest in ERICA, a system that enables real-time interaction capture from Android apps (Deka et al. 2016). 
As users interact with apps through ERICA, the system detects UI changes, seamlessly records streams of 
design and interaction data, and unifies them into a user interaction trace. (Figure 3). The key technical 
innovation of ERICA is its black-box approach to mining interaction and design in mobile applica-
tions, requiring no instrumentation of an app’s source code. 

ERICA captures three streams of data: XML files that represent the hierarchy of UI elements (view hierar-
chies), screenshots captured from the UI at a high rate, and the stream of interactions performed by the 

Figure 3. An overview of ERICA, our scalable system for mining design and interactions in mobile apps. As 
users interact with apps through ERICA, the system detects UI changes, seamlessly records multiple 
streams of design data (screenshots, view-hierarchies, user events), and unifies them into a user in-
teraction trace.  
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user as she navigates the app. For each interaction event, we 
record the type such as “tap” or “scroll,” and the UI element 
that reported it. By reconciling these three streams of data, ER-
ICA computes a representation of the user trace composed of a 
sequence of distinct UI views, where each view is connected to 
the next through a performed user interaction. Each view com-
prises a screenshot and visual hierarchy of UI elements that can 
be queried for render-time properties. Screenshots snapshotted 
in-between interaction events are also recorded so that anima-
tion and motion design data is available for analysis. 

Crowd workers interact with apps on the devices of their 
choice through an ERICA web client. Komarov et al. demon-
strated that crowdsourcing is a feasible approach to collecting 

performance data for user interfaces (Komarov et al. 2013). ERICA’s architecture supports scripted tests, 
where crowd workers are asked to perform specific tasks on apps. When a test is deployed, the platform 
installs and runs the apps specified in the comparison set on a mobile device farm. The devices running 
the apps connect to a server hosting the ERICA web client, which continuously streams app screens to 
crowd workers’ browsers. As users interact with the app screens on their browsers, their interactions are 
sent back to the platform’s mobile devices, which perform the interactions on the app (see inset). To min-
imize bandwidth requirements, the testing platform uses an adaptive frame rate and a high-compression 
ratio.  

Proposed Research: Crowdsourcing In-The-Wild Analytics 

To move beyond scripted tests and capture in-the-wild app analytics, we propose to leverage ERICA’s 
base technology to build a background Android monitoring app that continuously logs user interaction 
and design data in every app that it is granted permission to monitor. Although commercial systems such 
as App Annie and research systems like PACO (Baxter 2015) log on-device app usage, they capture only 
high-level user behavior (e.g., what app a user launched). Our monitoring app will wrap ERICA and 
provide detailed app analytics over every interaction a user performs in an app, as well as the complete 
design state of the app during each interaction.  This data is powerful because it enables designers to dy-
namically query and generate design insights in a post-hoc fashion, asking new questions of user interac-
tion patterns as they aggregate on the platform. 

To support this style of crowdsourced testing, we propose to recruit a set of crowd workers through so-
cial media advertising and platforms such as UpWork for longer-term engagements than Mechanical 
Turk tasks. These crowd workers will download and install the ERICA monitoring app, which will track 
the set of apps that are installed on the workers’ devices and notify them of trials they can join. By joining 
a trial, a crowd worker will agree to have his device usage logged during for the duration of the trial, and 
be paid a fixed fee for the data that he generates during normal use.  

Unlike the ERICA web client, this native monitoring app will not immediately stream data to our servers. 
Instead, it will require workers to verify that no personally identifying information (PII) is being leaked 
and approve the data before it is uploaded. While workers who participate in scripted tasks can be pro-
vided proxy personal data for PII fields, workers will inevitably use their own data in natural testing. The 
native monitoring app will use machine learning classifiers to automatically detect PII fields, ignore text 
entered in them, black them out in screenshots, and allow workers to inspect and remove any part of an 
interaction traces that contains sensitive data before submitting it for reimbursement. 
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Functional Semantic Embeddings for Mobile UI/UX components 
Designers describe and reason about mobile designs using function-based semantic handles (e.g., onboard-
ing flow, profile screen, back button). To support core capabilities in design search, aggregation, and in-
sight generation, we propose a set of function-
al semantic embeddings for mobile UI/UX 
components. Once computed, these embed-
dings can be used to semantically classify 
design components in a user interaction trace, 
or determine whether two components are 
similar enough to be merged together when 
computing aggregate statistics. Within the 
user interaction traces collected through our 
capture systems, we can classify semantic sub-
sequences of screens which represent user 
flows such as search, login, onboarding, checkout, 
etc. UI screens can share the same labels as the 
flow they belong to, or have labels that de-
scribe specific states in the app such as home, 
settings, and profile. Similarly, semantic labels 
for interactive elements can describe the user 
task they initiate, specific app states they link 
to, or other self-contained actions (e.g., like 
icons, back buttons). To train embeddings for 
these three components of mobile app de-
sign, we can leverage the hierarchical rela-
tionships between them and their shared 
functional semantics. 

Prior Work: Creating a Training Dataset to Bootstrap Semantics 

To bootstrap these semantic embeddings, we collected an initial set of training data using ERICA. We 
crowdsourced user traces for 10K popular apps from 26 categories on the Google Play Store: a collection 
50 times larger than the largest preexisting manually-curated repository (Deka et al.  2017). In a second 
pass, we recruited 13 participants from Upwork to use each app for 10 minutes and perform typical tasks, 
generating more than 10K user interaction traces and 72K unique UI screens. We demonstrated that this 
scale of interaction data is sufficient to support deep learning techniques by training and evaluating an 
autoencoder for UI layout similarity, and have released the dataset to other researchers in the communi-
ty. 

Proposed Research: Learning Multimodal Embeddings through Design Hierarchies 

To build semantic embeddings for flows and screens, we propose to use the same “design scents” that 
humans employ: visual, textual, and structural cues in interactive elements that communicate which ac-
tions those elements enable humans to perform. For instance, a magnifying glass icon is a universal signi-
fier for search: when a user encounters an element containing such an icon, she knows to click on it and 
type in a query to initiate a search flow. Similarly, a large “sign in” button positioned in the middle of the 
UI signifies a login screen. These examples suggest that models that distinguish between classes of inter-
active elements can inform screen and flow embeddings. 

Figure 4. We can train a multi-modal embedding to se-
mantically classify interactive elements found on 
mobile UI screens. These embeddings can encode 
similarity relationships between visually distinct 
elements that serve similar functions, like a but-
ton containing the word “search” and the magni-
fying glass icon.  
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To learn a functional embedding over interactive elements, we intend to leverage the rich representation 
captured by RICO’s user interaction traces, which encodes visual, textual, structural, and interactive in-
formation about each UI element. First, we can identify all the elements that users have interacted with in 
the traces. Next, we can extract visual representations of each element by combining its bounding box 
with the screenshot of the UI it belongs to. Finally, we can extract class and resource-id element 
properties specified by the app creator as well as any text contained within. This textual data often pro-
vides semantic clues about the element’s functionality, and can function as weak supervision: Yi et al. lev-
erage a similar form of weak supervision --- artist’s annotations contained in their scene graphs --- to suc-
cessfully classify semantic parts of 3D models (Yi et al. 2017).  

Given this multimodal data, we can train a multimodal embedding on the classification task of predicting 
the text label of an element given its image representation. Multimodal embeddings are a popular ap-
proach for captioning and semantically annotating images, video, and audio (Baltrusaitis 2017). Such em-
beddings can encode tasks and functions that are similar to each other such as favorite and like, as well as 
UI elements that are visually distinct but functionally similar (Figure 4). 

Such an embedding over interactive elements can in turn inform functional embeddings for screens and 
flows. We can train a screen embedding that minimize distances between UIs based on their visual, textu-
al, and interaction similarity. Two login screens from two different apps may be visually distinct; howev-
er, in both screens, users would click on the login button to proceed to the next screen. Similarly, a flow 
embedding can learn from both the element and screen embeddings, and minimize the distances between 
flows that contain similar screens and user interactions. 

A key property of these embeddings is that information can propagate in both directions along the hier-
archy during training. For example, interactive elements that co-occur on a single screen should not be 
close together in the element embedding since they are likely to represent different UI functions. Similar-
ly, the flow embedding can generate additional training data for improving the screen embedding: from 
two nearby flows, we can generate similar screen pairs that were not part of the original training data. We 
can formalize this approach of iteratively improving the different models by propagating new training 
data up and down the design hierarchy as an instance of co-training (Blum and Mitchell 1998). 

Once computed, the testing platform can leverage these functional semantic 
embeddings to power design search, aggregation, and insights. Given a user 
interaction trace, the platform will first process the elements that a user in-
teracted with, projecting each element's visual and textual features into the 
embedded space, element-wise multiplying the vectors, and running them 
through a softmax classifier trained to output a distribution over functional 
labels (see inset) (Agrawal et al. 2016). These results can then be fed into a 
similar process to label each screen in a user interaction trace.  

Designers can use these semantic handles to identify relevant sections of 
arbitrary interaction traces, which will in turn allow them to identify rele-
vant, distal apps for their comparison sets. Similarly, the platform leverage 
these handles to identify successful trends and best practices: “onboarding 
flows with fewer than 5 screens have the lowest drop-off rates.” The plat-
form can also utilize the computed embeddings to support nearest-neighbor 
“query-by-example” style searches for design. Lastly, the platform can align 
screens in different user traces based on similarity in the embedding space, 
showing an app's aggregate user behavior. 
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Design Search, Aggregation, and Insights 
 
With a deployed capture system and functional embeddings in hand, we can hope to power a number of 
novel interactions in search, aggregation, and insight generation. While we have recently created rough 
prototypes of some aggregation and insight generation interactions to understand the design considera-
tions involved (Deka et al. 2017), we propose to develop and deploy these techniques at scale once we 
have collected sufficient data to train strong semantic design embeddings. 

Finding Relevant Flows 

To help designer’s find relevant apps to test, the platform will make the Google Play Store searchable 
through faceted keyword search over app metadata (name, category, etc.) and design semantics as well 
as support query-by-example search over app components. The learned embeddings enable both 
semantic keyword and query-by-example search. In addition to diverse types of queries, the platform can 
support different views of the results set. Depending on the query, it can present result galleries of app 
icons, flows, screens, and elements. Since ERICA captures screens at a high frame rate, flows can be 
presented as sequences of of screenshots or animated gifs. As part of this proposal, we will identify the 
searching techiques, query types, and design data views that are most useful to designers. 

Aggregating User Interaction Traces 

To help designers compare and contrast the different paths taken by users to accomplish similar tasks, we 
propose a novel, interactive visualization based on Sankey flow diagrams (Riehmann et al. 2005, Schmidt 
et al. 2008). Color-coded nodes representing different screens in a user interaction trace can be arranged 
sequentially along the horizontal axis, and the nodes in the visualization connected by bands whose 
thickness is directly proportional to the number of users who took the path defined by its node endpoints 
(Figure 5). To construct these diagrams, the platform must compute the set of screens that are semantical-
ly similar in screen embedding space at every interaction step and merge them together into a single 
node.  

These diagrams can allow designers to quickly understand aggregate interaction data, as well as in-
spect individual traces and screens to identify usability issues. For example, designers can interact with 
the nodes can to view screenshots and with the bands to see user interaction traces. Similarly, a designer 
can create a flow by demonstration in an app, and use it to highlight paths of interest in the visualization. 

Figure 5. Interactive flow visualizations allow users to quickly understand aggregate interaction data, as well 
as inspect individual traces to identify usability issues. The darker colored edges indicate golden 
paths --- a designer’s intended interaction sequence to accomplish a task. 
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For example, by defining a golden path for a task --- the intended path a user should take to complete a 
task --- and highlighting this path in the diagram, a designer can quickly determine the screens that cause 
the most confusion and are most likely to prevent users from completing the task.  

Generating Summative and Comparative Usability Insights 

The platform will also allow designers to compute aggregate performance statistics for usability tests, 
including both quantitative and qualitative metrics. For standard quantitative measures like completion 
rate, error rate, time on task, average number of interactions, etc., the platform can provide confidence-
intervals based on statistical analysis of the collected user traces.  When a designer requires more cer-
tainty about user behavior than the platform can provide, new tests can be dynamically generated and 
deployed, sampling flows that have inadequate coverage. 

To calculate qualitative measures like perceived difficulty and user satisfaction, the platform can estimate 
success and error rates based on designer defined end screens, using the content-agnostic screen em-
beddings to detect whether the final state of a user trace matches the set of success states specified by the 
designer. Alternatively, the designer can also construct usability tests with built-in verification, requiring 
a user to provide an answer to a question in addition to performing a task in the app (e.g., what is the 
address of the store closest to ZIP 94041). 

These measures can also be used for comparative testing: detecting statistically significant differences 
in the performance of flows that accomplish the same task. Although the designs being compared may 
be quite different, comparative performance testing can help designers build intuition about the relative 
effectiveness of design patterns, and set benchmarks for their own apps. A designer who evaluated our 
prototype usability testing platform mentioned, “I am generally interested in if these reusable components in 
different apps share similar usability issues.”  Similarly, another designer said, “if adding a record for food takes 
ten second on my competitors app, that would be my target...if I have a set of core tasks that can be matched up with 
those in other apps then I can understand how well I am doing” (Deka et al. 2017).  

Deriving Design Insights and Best Practices 

Because the proposed monitoring app will capture every user interaction performed in an app along with 
its associated design context, designers will be able to query the platform after the fact to derive high-
level insights. By leveraging the semantic classification of screens and elements over user traces, the plat-
form can uplevel information about the different tasks users performed within flows. A designer can ask 
questions like “what percent of app users perform activity X every day?”, “on average, how much time 
does a user spending doing activity X?”, and “is there a significant difference in behavior X between these 
two user cohorts?”   

This highlight a key power of the proposed platform: it enables scalable, precise meta-analyses by com-
bining raw data from prior trials. Rather than restricting meta-analysis to aggregate data that may not 
serve to answer a designer’s specific question, the platform can leverage all the prior tests that were per-
formed to support one-stage individual participant data (IPD) meta-analyses (Debray et al. 2013). 

This ability to aggregate raw testing and interaction data after the fact also makes it possible to identify 
best practices and design principles in a data-driven way. By clustering performant traces across apps 
and performing facet analysis, designers can leverage the platform to identify UX trends and interac-
tion patterns that are provable hallmarks of good design.  
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Educational Plan 
As an educator, I have three overarching pedagogical goals: developing curricula that integrate design, 
innovation, and entrepreneurship into computer science; empowering students to begin research early in 
their academic careers; and leveraging design to increase diversity among students who study computer 
science. 

In my first three years at UIUC, I’ve created and taught three courses in furtherance of these goals: one 
targeting at first-year undergraduates, the second for upperclassmen, and the third for graduate students. 
My classes teach practical web and data science skills that are sought after in industry, and offer entry 
points into research for students who are planning to pursue Master’s degrees or PhDs.  

In addition, I conceived of and established a joint project between the Computer Science Department and 
the School of Art + Design called the Underground Unicorn Program. The goal of this program is to bring 
computer science research and product design together for undergraduates in the major. The program is 
driven by real-world problems in domains that are not often associated with traditional engineering (e.g. 
fashion, interior design, social media), and accordingly attracts students from non-traditional back-
grounds who are interested in designing solutions through data science and computation.  

Course Development 

Data-Driven Design: A course geared towards Master’s and PhD students that explores the use of data-
driven methods to support creative design processes by examining recent research in human computer-
interaction, product design, cognitive science, machine learning, graphics, vision, and natural language 
processing. Students read and discuss papers from these fields, and work in teams on a multi-week pro-
ject to build data-driven tools to solve real-world design problems. The course has been offered three 
times (including the current semester); the average enrollment is 25 students; the curriculum for the cur-
rent offering can be found here. Several past course projects have turned into publications at top-tier HCI 
conferences. 

The Art of Web Programming: A course geared to-
wards third- and fourth-year undergraduates that 
presents the client- and server-side technologies that 
enable modern Web applications. Topics include the 
building blocks of the Web (HTML, CSS, the Docu-
ment Object Model, JavaScript) and data exchange 
(HTTP, JSON, RESTful APIs, and SQL/NoSQL data-
bases). Students work in teams to design, implement, 
and deploy a full-featured web application. The 
course has been offered three times, and the curricu-
lum from last semester can be found here. In the past 
I have capped the enrollment to 100, but due to pop-
ular demand I am scaling the class to 200 students 
in the fall. The course is theoretically challenging 
and time-consuming, but dedicated students often 
land competitive summer internships and full-time 
jobs after taking the course (Figure 6). The course also 
organizes events for current students and course 
alumni to connect with industry professionals 
(press). 

Figure 6. A student poll with 150+ votes on the 
UIUC Computer Science Facebook 
group ranked the Art of Web Program-
ming class (CS498RK) as the most inter-
esting/useful tech elective. 
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Research with Design, Data, and the Web: An introduction to 
design thinking, data science, web programming, and research 
methodologies geared towards freshmen and sophomores. 
Students read and discuss introductory materials, accessible 
research literature, and relevant articles from popular media. 
In addition, students work in teams to frame research ques-
tions, and design and prototype solutions. This course was of-
fered once in Spring 2015; out of the ten undergraduates who 
took the course, six continued working in my research group. 
For this class, I was named to UIUC’s List of Teachers 
Ranked as Excellent by their Students. 

The Underground Unicorn Program 

I created the Underground Unicorn Program (UUP) with Eric 
Benson (Associate Professor & Chair of Graphic Design) as a 
joint project between the Computer Science Department and 
the School of Art + Design. In the tech industry, unicorns are 
individuals who can both design and develop: a rare combina-
tion that is sought after in industry. The goal of the UUP is to 
teach top undergraduates in Computer Science and Design 
the requisite set of complementary skills to become unicorns. 
The UUP is a year-long program: during the first semester, 
students take sister courses in web/mobile programming and 
design methods; in the second semester, students enroll in a 
tech transfer project course where they design, develop, and 
deploy user-facing products based on research done at the uni-
versity (Figure 7). The first UUP class comprised 17 students 
of which 8 students were from underrepresented minority 
groups. Three of the projects resulted in research papers that 
will be submitted for publication this fall, and all four remain in 
active development by students who hope to turn the function-
al prototypes they have developed into legitimate product 
launches. 

CS + X 

As part of UIUC’s CS + X initiative to create interdisciplinary majors that marry a background in comput-
er science with disciplines in the arts and sciences, I am collaborating with colleagues to develop a curric-
ulum for CS + Art and Design. The curriculum will place a strong emphasis on studio practice, and com-
bine fundamental courses in design methods, type, imaging, and digital interaction with computer sci-
ence courses in data structures, web programming, human computer interaction, data mining, data visu-
alization, and applied machine learning. One of the original motivations for developing the UUP was to 
create a lightweight testbed for understanding how to transfer knowledge between computer science and 
design. 

Figure 7. Screenshot from an UUP pro-
ject: an emoji-based review 
app. The Underground Uni-
corn students plan to deploy 
the app this summer and col-
lect data to learn a grammar 
for emoji communication.  
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Broader Impacts 
Once built, the testing platform will serve as a self-sustaining resource for designers, developers, digital 
marketers, UX researchers, and educators in the design and HCI communities. We intend for the plat-
form to democratize design testing, dramatically lowering the cost of drawing data-driven inferences 
about design tasks, and making these inferences economically feasible for teams with limited access 
to engineering resources, user research, or large preexisting user bases. I will also integrate this plat-
form into the web & mobile app course curriculum at my institution and make it available to other educa-
tors to train students in the emergent field of computational design.  

The First Design Resource of its Kind 

In his 2017 Design Tech Report, John Maeda --- former president of RISD and venture partner at Kleiner 
Perkins Caufield & Byers --- writes, “Design isn't just about beauty; it's about market relevance and mean-
ingful results” (Maeda 2017). We hope that, by developing techniques for explicitly tying design deci-
sions to business goals, more companies will invest in better design, resulting in better products and 
smoother interactions for their customers. The goal of this testing platform is to make data-driven de-
sign accessible and economical, enabling industry professionals to more efficiently produce higher-
quality designs where success can be measured concretely and communicated to key stakeholders.  

In 2013, I co-founded a data-driven design company --- Apropose --- based on my dissertation work on 
mining web designs (Kumar et al. 2013), and raised $2.3M in seed funding from top venture capital firms 
Andreessen Horowitz and New Enterprise Associates. The inspiration for this proposal came from doz-
ens of first-hand interviews with digital design agencies and the design wings of tech companies I con-
ducted while serving as Apropose’s Chief Scientist. Time and time again, we found that once a company 
was locked into a particular design, they were heavily disincentivized from considering divergent alter-
natives, and instead continuously optimized through small changes and A/B testing. We intend this plat-
form to allow designers to cheaply explore and validate large-scale design changes with data for the 
first-time. 

The economic argument for open-sourced design has two facets. First, it is inexpensive to recruit crowd 
workers who are paid simply to use their devices as they normally would: the pool of available workers 
is much larger than the set of Amazon’s Mechanical Turkers. Second, each time a designer pays for a test, 
she is implicitly contributing data to hundreds of related tests, multiplying the effect of every dollar spent. 

Curricular Integration 

We also intend for the platform outlined in this proposal to serve as a valuable resource for educators 
teaching data-driven design. At UIUC, I am in the process of transitioning the web programming course 
into an app programming course, where the last third of the semester will focus on mobile app design and 
programming. The testing platform will serve as a teaching tool for user experience and interaction de-
sign, supporting students as they conduct comparative usability tests to optimize the user flows they de-
sign and build. 

Illinois’ Graphics Design Department is also interested in using the platform for its design search capabil-
ities: design instructors often find it difficult to find illustrative examples for concepts that they are teach-
ing in class. Similarly, the UUP teams building mobile apps can leverage the platform during exploration 
and testing. In fact, one of the UUP projects we have planned for the spring semester is building the on-
device monitoring app itself, which will allow other UUP teams to “dogfood” the app and give feedback 
as it is being built.  
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Broadly, we believe that this platform is essential for training the next generation of designers. John 
Maeda propounds that computational design is the future of design: “designing for billions of individual 
people and in realtime” (Maeda 2017). For computational designers to have impact at this scale, it is es-
sential for them to be able to leverage data-driven techniques to understand how design decisions are 
tied to business outcomes. 

Timeline and Deliverables 
 

Year 1 Year 2 Year 3 Year 4 Year 5 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 
 

Results From Prior NSF Support 
The PI has no previous NSF support. 
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