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ABSTRACT 
Organizations increasingly rely on behavioral analytics tools like 
Google Analytics to monitor their digital experiences. Making sense 
of the data these tools capture, however, requires manual event tag-
ging and fltering — often a tedious process. Prior approaches have 
trained machine learning models to automatically tag interaction 
data, but draw from fxed digital experience vocabularies which 
cannot be easily augmented or customized. This paper introduces 
a novel machine learning interaction pattern that generates cus-
tomized tag predictions for organizations. The approach employs a 
general user experience word embedding to bootstrap an initial set 
of predictions, which can then be refned and customized by users 
to adapt the underlying vector space, iteratively improving the qual-
ity of future predictions. The paper presents a needfnding study 
that grounds the design choices of the system, and describes a real-
world deployment as part of UserTesting.com that demonstrates 
the efcacy of the approach. 
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1 INTRODUCTION 
To monitor digital experiences, organizations often rely on behav-
ioral analytics tools [1, 16]. These tools are powerful because they 
capture most user- and system-level events (e.g., clicks, page loads) 
that occur on deployed websites and applications. Rendering this 
data intelligible at scale, however — for instance, to measure key 
performance metrics (KPIs) such as conversion or drop-of rates — 
typically requires much manual work in the form of event tagging 
and fltering [8]. 

To perform this tagging, developers and analysts must instru-
ment the digital asset to map user actions (e.g., click, scroll) to 
semantic descriptions of user intents (e.g., checkout, browse inven-
tory). Although modern analytics tools ofer interfaces to assist 
with this task, it remains a time-consuming process that must be un-
dertaken each time an application — or the analysis to be performed 
on it — is meaningfully altered. Prior work has demonstrated how 
machine learning (ML) models can be trained to automatically tag 
interaction data [17, 25, 28], but these methods draw from fxed 
digital experience vocabularies which cannot be easily augmented 
or customized. 

This paper introduces a new interaction pattern for event tag-
ging based on ML (Figure 1). The system leverages a general user 
experience (UX) word embedding to make a set of initial intent 
predictions for each user action. Then, analysts can correct and 
refne these predictions through interactive visualizations of the ap-
plication’s analytics data. As more feedback is given to the system, 
the vector space used to encode the organization’s UX ontology is 
refned and augmented via a counter-ftting algorithm [29], improv-
ing the performance of future predictions in turn. In this way, the 
system allows organizations to employ their own custom semantic 
vocabularies and extract more relevant insights from user analytics 
data. 
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Figure 1: The feedback loop system comprises three parts: a front-end that captures user feedback; an API that maps the feedback to database and vector 
space refinement operations; and an embedding vector database that computes nearest neighbor tags — custom and global — for a given element text query. 

To inform the design of the proposed system, we conducted a 
needfnding study with industry professionals who work with web 
analytics data. The study confrmed the high cost of instrumen-
tation in analytics, and also revealed that tag standardization is 
another key challenge in large organizations, since diferent teams 
may use diferent terminology to represent similar intents. This 
observation led to a second, unanticipated use of the system, which 
can surface related semantic concepts between teams to promote 
standardization, or allow individual teams to learn their own cus-
tom ontologies. 

To evaluate the system, we implemented and deployed it as part 
of UserTesting.com — the industry-leading remote usability testing 
platform — for six months. Organizations leverage the UserTesting 
platform to recruit third-party users to perform tasks related to 
their digital assets. The platform then generates visualizations of 
the paths users traced, and performs automated tagging of the 
constituent interactions. We show that the system is capable of 
predicting custom tags over new interactions from just a few user 
refnements, and that users most often leverage the relabeling to 
employ market- or domain-specifc concepts. Finally, we illustrate 
the system’s capabilities in two distinct market verticals. 

2 RELATED WORK 
The goal of this work is not to leverage user feedback to memo-
rize the intent tags of specifc UI elements, but to learn semantic 
representations of these elements that can be used to efciently 
categorize the interactions that comprise a digital experience. The 
proposed feedback loop seeks to mitigate pain points associated 
with current event tagging tools by leveraging design semantics 
and interactive machine learning techniques. 

2.1 Event Tagging 
Organizations primarily rely on external software tools to collect 
web analytics data and monitor digital experiences. There are many 
such tools on the market: Google Analytics, Google Tag Manager, 
Adobe Analytics, WalkMe, ObservePoint, etc. They allow users to 
manually create and assign tags to digital experiences. These tags 
can then be used to organize and query specifc experiences and 
compare them. All provide some level of abstraction that helps 
address common pain points in event instrumentation. Consider 
Google Tag Manager: while this software does give of-the-shelf 

capabilities for tracking common events on a digital asset such 
as when the page has loaded, the workfow becomes exceedingly 
complicated when custom events become involved. Users must frst 
identify the custom event they want to track, and then create event 
triggers for that event using CSS element selectors. A user must set 
up the tags for each event manually, and verify that data is fowing 
from the Google Tag Manager to the Google Analytics interface. 
This process must be repeated for each custom event [3]. 

While each software option provides similar functionality, the 
overall look and feel of one can difer signifcantly from another [1, 4, 
16]. Thus, individuals within organizations consider several smaller 
factors when deciding which software tool they rely on for extract-
ing design semantics from their user fows. We investigate these 
factors in detail by conducting a formative interview study with 
web analytics professionals. The methodology and results of this 
study are described in Section 3. 

Regardless of the specifc software used, manual instrumentation 
is a laborious process. Users must tag each event individually in 
order for the event to receive the same tag in the future. These 
systems memorize the tags for the instrumented events and cannot 
generalize beyond the set of CSS element selectors that are provided. 
Therefore, the proposed feedback loop utilizes design semantics to 
tag interactions, allowing the system to automatically recognize 
classes of UI elements that are semantically similar without manual 
instrumentation. 

2.2 Design Semantics 
Prior work has developed approaches for predicting design seman-
tics that describe the structural (e.g., map view) and functional (e.g., 
search button, login screen) roles that design elements play in a 
user experience [13, 26]. These semantics can be applied at all levels 
of the design hierarchy: UI components, UI screens, and user fows 
(i.e., screen sequences with interaction transitions). 

At the component-level, there are classifers designed to un-
derstand the individual UI/UX elements on a given screen. These 
classifers learn what components such as buttons or navigation 
bars may look like on one screen, and are able to identify these same 
components on diferent screens. For example, Liu et al. presented 
an approach that generated semantic annotations for mobile UI 
elements [26]. Zhang et al.’s work in mobile UI accessibility extracts 
and evaluates individual UI elements based on how their design 
semantics address accessibility heuristics [35]. 

https://UserTesting.com
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Rather than predict semantic labels for each individual UI com-
ponent on a screen, other approaches aggregate component-level 
features to produce an overall screen-level semantic understand-
ing. Screen2 Words uses human-generated annotations of screens 
to train a model that produces text-based summaries of an entire 
mobile UI screen [34]. Each summary encapsulates the purpose of 
a given screen (e.g. “Page showing diferent shipping locations” or 
“Page displaying diferent languages to choose”). Screen2Vec works 
at the screen-level granularity as well, generating screen embed-
dings of mobile interfaces based on textual and graphical elements 
present on a screen and application-level descriptions [25]. The 
work demonstrates how these embeddings capture the semantic 
meaning of UI screens. 

Finally, other work has explored predicting design semantics for 
user fows —- i.e., interaction sequences spanning multiple screens. 
Wang et al.’s framework utilizes large language models (LLMs) to 
extract semantic meaning from UI screen interactions [33]. The Mo-
TIF system determines the feasibility of specifc user tasks based on 
input UI screens. For example, MoTIF will determine that “changing 
the temperature to degrees Celsius” is feasible if screens from a 
weather application are given, but not if screens from a calculator 
application are given. This approach requires extracting design 
semantics from multiple UI screens and bridging them together to 
determine if an input task is feasible [11]. 

These automated approaches address some of the issues with 
manual instrumentation. However, they often rely on fxed vocabu-
laries that cannot be augmented to accommodate custom types of 
components, screens, or interactions. For example, some of these 
approaches utilize ontologies that are bootstrapped by the RICO 
dataset, a large set of mobile application designs [17]. These sets 
are neither comprehensive nor specialized to a domain, meaning 
that users or groups with domain-specifc ontologies cannot see 
their vocabularies refected in these systems. Instead, we propose 
a feedback loop that is bootstrapped with a general vocabulary, 
similar to previous work, but allows for the automated expansion 
of this general vocabulary through user feedback. The proposed 
system predicts interactions using screens and components, and 
the feedback loop allows it to generate a more dynamic training 
set so that future interactions can be tagged with custom language. 

2.3 Interactive Machine Learning 
The proposed system leverages design principles from interactive 
machine learning. User control in recommender systems is shown 
to increase user satisfaction with the suggestions a system presents 
[22, 24]. This control often comes in the form of “feedback” that a 
user can provide to the system to indicate their level of satisfaction 
with that system’s output. The granularity of this feedback can vary 
between critiquing a specifc prediction the system makes (“You 
were wrong to predict that I would like this show”) to critiquing a 
general assumption the system made about the user (“You are wrong 
in thinking I like comedy shows.”). Systems also have to balance 
between enabling users to explicitly leave feedback where they can 
directly tell the system that a prediction or classifcation is wrong 
or correct, and implicitly leave feedback where the system will 
consider its output correct if the user interacts with it (e.g. watching 
a show the system recommends) and incorrect otherwise [21]. 
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Leveraging user feedback is common in interactive machine 
learning systems [9, 12, 15, 20, 30]. Allowing for feedback often 
increases system engagement: if users feel like they can have an 
impact on a system they use, they are more likely to view that 
system favorably [7, 32] Thus, the proposed system allows for users 
to provide both explicit and implicit feedback on digital experience 
tags. Over time, this feedback customizes the system to the user or 
group’s specifcations, tagging digital experience data with their 
custom vocabulary. 

3 NEEDFINDING STUDY 
In order to understand how organizations set up event tagging 
and defne experience ontologies, we conducted needfnding inter-
views with fve web analytics professionals. From the subsequent 
qualitative coding of these interviews, we identifed three areas of 
friction that motivated the proposed system’s design: organization 
workfows, event instrumentation, and tag consistency. 

3.1 Methodology 
We conducted moderated interviews with fve participants based in 
the United States and Canada who reported using, managing, and/or 
implementing web analytics as part of their professional respon-
sibilities (two males, three females, median age 34). We recruited 
the participants using UserTesting, a remote experience testing 
platform that has a proprietary participant panel, and compensated 
them 30 US dollars for completing a 30-minute interview. The par-
ticipants worked in a variety of industries — software, insurance, 
education, and consulting — and had diverse backgrounds in prod-
uct management, operations management, engineering, marketing, 
and art/design. We asked participants to describe their current 
role, how they use web analytics in their work, and what, if any, 
challenges they encounter related to web analytics (Appendix A). 
The research team conducted the interviews remotely, which were 
recorded and transcribed. The research team used the transcripts 
to conduct open coding and identify themes. 

3.2 Workfows and Tools 
The interviews revealed a wide variance in organizational approaches 
to managing web analytics. Some organizations have a single person 
manage the entire web analytics process, which includes writing 
code to track events, setting up the tracking environment, planning 
which events to track, and analyzing web analytics data (P2, P5), 
while others have dedicated web analytics teams (P1, P3, P4). Some 
organizations manage web analytics entirely in-house (P1, P3, P5) 
while others outsource it to third parties (P2, P4). P4 felt that their 
current organizational structure led to redundant requests for web 
analytics data: “the most time consuming thing I’d say is...people 
asking for specifc reports, people wanting to track this one button... 
we’re tracking it but it’s going into this overall report... I think the 
educating the users piece [is the most time consuming].” Similarly, 
P2, who was also responsible for setting up and managing event 
tags, when asked about their organizational and team structure said 
“often times they will make requests from us that are not really doable.” 
P3 felt that their company’s workfow also led to confusion, saying 
“there is a barrier of communication of really knowing which team 
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Figure 2: The feedback loop uses a general experience vocabulary to bootstrap initial tag predictions, which are surfaced on an interactive Sankey diagram 
representing user website navigation paths in the current implementation. Organizations can interact with the diagram to change system-generated intent 
predictions and add new intents to their experience ontology. 

needs what.” Both participants who regularly requested web analyt-
ics data to consume and participants who fulflled web analytics 
requests reported problems related to their team workfows. 

Moreover, all participants relied on diferent web analytics tools 
and no single software package met all needs. Software mentioned 
by at least one participant includes: Google Analytics 3/4 (� = 4), 
Contentsquare (� = 1), WalkMe (� = 1), ObservePoint (� = 1), 
Siteimprove (� = 1), Splunk (� = 1), and other in-house custom web 
analytics tools (� = 2). Personal preference for specifc software 
was a major driving factor for organizational adoption. In fact, 
P4 described that their team uses several tools to accommodate 
individual preferences. They stated that some people within their 
team “have allegiance to certain tools and others with other tools... 
we have like 5 tools that all do the same thing [in our workfow].” 

3.3 Event Instrumentation 
Even with extensive use of external software tools for manual 
instrumentation, many participants (P1, P2, P4, P5) describe instru-
menting events, where a user assigns tags to assets or events on a 
page, as time consuming. For example, P2 described how they in-
strumented web analytics events to track the number of clicks each 
news story received on their website: each time a visitor clicked a 
news story, it would trigger that story’s click event, and increment 
that story’s click count. P5 explained that “setting all the events up 
[is] very time consuming.” In addition, P2 described being in a state 
of “constant maintenance... we’re always looking at... what’s useful 
in our domain... we’re always looking for additional features [tags].” 

Finding each instance of an event in code and manually instru-
menting it can be a time-consuming activity. To alleviate this pain 
point, some participants use analytics templates that contain code 
to recognize diferent event types and automatically tag and track 
them. For example, if an organization in the e-commerce sector had 
many digital assets to track events for, it could create a template for 
tracking events related to purchasing products (“add to cart”, “enter 
delivery information”, etc). Then, each time a new digital asset was 
created, events related to purchasing would automatically be tagged 

and tracked. P4 reported that their organization currently used tem-
plates which made setting up event tracking much easier: “it’s a lot 
easier now to deploy new sites because we have sort of a set standard 
of, you know, events that we want to track.” However, most analyt-
ics templates still require customization to detect events that are 
specifc to each organization or market vertical. P4 stated that their 
current templates are the result of years of manual customization. 
Some organizations are dissuaded from using templates because 
the overhead of customizing and maintaining them outweighs the 
potential benefts. P5 said, “I would think a template could work, but 
we do not [use them].” 

3.4 Tag Consistency 
With a lack of workfow standardization and many stakeholders, 
maintaining tag consistency within and across diferent digital 
assets can be challenging. P4 stated that “we had to make sure 
what we’re calling in one site is the same as what we’re calling in 
another site... it could take days to weeks.” Participants also reported 
inefciencies due to inconsistent tracking, and problems arising 
with new custom tags or changes to existing tags. These changes 
force organizations to ensure that all corresponding events across 
websites or products were assigned the new tag: “ we track[ed] 
internal clicks diferent than external clicks, but then the directive 
came down [to] treat them all together... we have to go into the tag 
manager and delete the internal and external click tag, and create one 
tag that tracks both... and have to do that on every website” (P4). 

Overall, participants revealed that leveraging current tools still 
resulted in a lengthy and continuous process of ontology initial-
ization followed by maintenance. Often this process led to tagging 
inconsistencies within a single organization, which signifcantly 
impacted the efcacy of using web analytics. Without tag consis-
tency, participants said that it would be difcult to trust any insights 
gained from these web analytics. 
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Figure 3: The system leverages vector space refinement operations to add custom tag embeddings to the database and update organization-specific copies 
of the element text embeddings based on user feedback. 

4 CUSTOM UX ONTOLOGY PREDICTION Based on these updates, the back-end can predict semantically sim-
ilar interactions using the user-defned language. Moreover, we 
designed this approach to promote consistency when deployed in 
an organization where many users provide feedback to the system. 
The system favors used terms more frequently, allowing the orga-
nizations to reinforce a cleaner experience ontology over time. We 
implemented and deployed all parts of the feedback loop as part of 
UserTesting’s platform for remote experience testing. 

Based on the needfnding interviews, we designed a machine learn-
ing feedback loop for event tagging that facilitates automation while 
also supporting customization and consistency (Figure 1). This ap-
proach relies on an initial set of intent tags and an of-the-shelf 
language model to bootstrap predictions. Through a feedback inter-
face, users can refne system-generated predictions. The back-end 
leverages this feedback to add terms to the initial intent ontology 
and customize the embedding vector representations of its terms. 
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4.1 Front-end for Capturing Feedback 
The UserTesting platform for remote experience testing provides in-
teractive Sankey diagrams to visualize participant journeys through 
digital assets such as websites. Each bar in the Sankey diagram 
denotes a UI screen and the edge between bars represents the inter-
action taken to navigate between the two screens. These diagrams 
are used in UX research analysis to identify common navigation 
patterns as well as anomalous behaviors. 

We implemented the feedback loop’s user interface as part of 
this feature, overlaying system-generated intent predictions on the 
Sankey edges, and allowed users to refne them (Figure 2). The sys-
tem uses an initial set of intent tags and an of-the-shelf language 
model to bootstrap predictions. For this implementation, predic-
tions are based on the text contained within the elements that a 
participant interacts with. For example, if a user clicks on a button 
containing the text “Sign in with Google,” that Sankey interaction 
edge could be tagged with the intent “Sign in.” If the element that 
a participant interacts with contains no text or the system cannot 
predict an intent for the text contained within it, the Sankey edge 
will not display any tag. 

Users can click on the Sankey edges to update system-generated 
intents or add an intent where the system did not supply one. 
User-created intent tags can already exist in the global or custom 
experience ontology, or may be entirely new. When users update 
a Sankey edge tagged with a system-predicted tag, they can have 
that change be applied to all edges with the same system-predicted 
tag. Additionally, they can provide a rationale for the update: “too 
general,” “inaccurate,” or “other.” These updates and rationales are 
then sent to the back-end as feedback for the feedback loop to ingest 
and modify the embedding space. 

4.2 Back-end for Updating Embeddings 
The system’s back-end modifes the custom embedding space via 
an API that maps the user feedback to CRUD and vector space 
refnement operations over an embedding vector database. The 
vector database comprises embeddings for global tags, which are 
part of every experience ontology, and organization-specifc custom 
tags. The back-end predicts custom and global intent tags for user 
interactions as nearest neighbor queries over the vector database. 

4.2.1 Global Embedding Space Initialization. We initialize the feed-
back loop with a “global” experience ontology and an of-the-shelf 
language model to automatically tag common user interactions. 
The starting vocabulary comprises 71 common interactions a user 
might perform when navigating an interface. It includes behav-
ioral and industry-based words and phrases (e.g., “exploration,” 
“collaboration,” “purchase,” and “favorite”). 

To ensure that the ontology was comprehensive, we interviewed 
10 user behavior analysts about their interaction coding practices. 
The analysts were recruited from a variety of industries, including 
travel, e-commerce, and education. From this research, we created 
a preliminary ontology, which we sent to 15 additional analysts 
recruited from UserTesting’s proprietary panel and asked them to 
highlight user intents they commonly saw and add any that were 
missing. Based on this second round of research, we created a fnal 
global experience ontology comprising 71 intents, which are part of 
all custom experience ontologies. If an organization has not defned 

any custom intent tags, the system will draw all predicted tags from 
the global ontology. 

To bootstrap tag prediction, we insert into the vector database 
embeddings for each intent in the global ontology and any textual 
phrases that could appear in interactive UI elements that are often 
associated with each global intent, which we manually enumerate 
based on data collected during our research and found in prior 
work [26]. For instance, “add to cart” is mapped to phrases such as 
“add to bag” and “add to basket.” 

We compute embedding vectors for each term in the global 
ontology based on GloVe [31], a language model used to encode 
design semantics in prior work [34]. If a global intent tag is one 
word, we use the pre-trained GloVe embedding vector for this word 
is used to represent the tag in the vector database. For multi-word 
tags (e.g. ‘Add to cart’), two researchers independently selected a 
single word from the phrase that best captured its semantic meaning. 
If both researchers agreed on the representative word, we inserted 
this word’s GloVe embedding into the vector database for the intent 
tag. If the researchers disagreed, a third researcher broke the tie. 
This approach is agnostic to the language model we use to compute 
embedding vectors. For example, in the future, we can use models 
that accept sequential input to produce embedding vectors such as 
transformers (e.g., BERT [18]) without modifying the rest of the 
feedback loop logic. 

Once we compute a vector embedding for a global intent tag, we 
can compute the embedding vectors for its related UI element texts 
by copying the intent tag’s embedding and perturbing it to a nearby 
point in the embedding space. For example, the embedding for the 
element text "add to cart" would be near the pre-trained embeddings 
for the global intent tags "buy" and "purchase." Therefore, when 
the system performs a nearest neighbor search to predict intent 
tags, the UI element text queries are mapped to the right intent 
tags. Incidentally, the global experience ontology and tag prediction 
architecture could serve as the general template for web analytics 
workfows mentioned by some participants during the needfnding 
interviews. Allowing users to start with a set of common tags and 
tracked interactions could decrease the time spent setting up initial 
analytics frameworks. 

4.2.2 Custom Embedding Space Refinement. While tag prediction 
over a global intent embedding space obviates initial setup costs, 
organizations often want to customize event tagging. Therefore, the 
system allows users to create custom experience ontologies by pro-
viding feedback on intent predictions. The feedback loop seamlessly 
integrates with the tag prediction architecture through an API that 
maps user feedback to database operations that shape custom em-
bedding spaces for each organization. This approach draws upon 
prior methods for refning vector spaces based on incorporating 
new domain-specifc terminology and linguistic constraints [19, 29]. 
While these methods are focused on fne-tuning global vector 
spaces, we can apply similar techniques at the organization-level 
to shape each custom embedding space. 

Through feedback, users can introduce new custom tags to their 
experience ontology and redefne the meaning of global and custom 
tags in the custom embedding space. Since the nearest neighbor 
search to compute intent for a user interaction is based on the 
interaction’s UI element text embedding, we shape the custom 
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Figure 4: When a user provides feedback that the predicted tag is “too general,” the system creates a custom tag embedding perturbed from the predicted 
embedding, and atracts the organization-specific copy of the element text embedding to the custom tag embedding. When the predicted tag is deemed 
“inaccurate,” the system repels the element text embedding copy from the predicted embedding, and creates a custom tag embedding perturbed from the 
updated element text embedding copy. 

embedding spaces—i.e., defne the semantic meaning of intent tags— 
by moving around UI element text vectors. There are four types 
of vector space refnement operations the API can perform: It can 
create and insert new tag and element text embeddings into the 
vector database; perturb vector representations by adding random 
noise; attract an element text embedding closer to a tag embedding 
vector to minimize the semantic distance between them; and repel 
an element text embedding away from a tag embedding vector to 
establish greater semantic distance between them. 

The API determines the set of vector space refnement opera-
tions to execute based on the user feedback (Figure 3). When a 
user provides intent feedback, the front-end provides the API with 
the following data: a user provided custom tag describing an in-
teraction, the interaction’s UI element text, a system-generated 
predicted tag if it existed, and a rationale for the intent update 
if the user provided one. 

If the element text embedding already exists in the database: 

• The system checks whether an organization-specifc copy 
of the element text embedding also exists. If it does not, 
the system creates an element text embedding copy and 
perturbs it from the existing element text embedding. 

• If the custom tag embedding exists in the embedding vector 
database, the system attracts the element text embedding 
copy to the custom tag embedding to minimize the semantic 
distance between them. 

• If the custom tag embedding does not exist in the vector 
database, the system’s actions depend on the value of the 
predicted tag. 
– If the predicted tag is null (i.e., the Sankey edge ini-
tially had no label), the system creates a new custom 
tag embedding and perturbs it from the element text 
embedding copy. 

– If the predicted tag is incorrect, the system repels 
the element text embedding copy from the predicted 
tag embedding. The system then creates a new custom 
tag embedding and perturbs it from the element text 
embedding copy (Figure 4). 

– If the predicted tag is too general or no update ra-
tionale is provided, the system creates a new custom 
tag embedding and perturbs it from the predicted tag 
embedding. The system then attracts the element text 
embedding copy to the new custom tag embedding (Figure 
4). 

– If the update rationale is other, the system takes no action 
and waits for the update to be reviewed by a person. 

If the element text embedding does not exist in the database: 

• If the custom tag embedding already exists in the vector 
database, the system creates a new element text embed-
ding and perturbs it from the custom tag embedding. 

• If the custom tag embedding does not exist in the em-
bedding vector database, the system’s actions depend on 
whether the language model being used can produce an 
embedding vector for the element text or custom tag. 
– If the language model can produce an embedding for the 
custom tag or element text, the system creates a new 
custom tag embedding by querying the language model. 
The system then creates a new element text embedding 
and perturbs it from the custom tag embedding. 

– If the language model cannot produce an embedding for 
either the custom tag or element text, then the system 
creates a new element text embedding and places it at 
a random point in the embedding space. The system then 
repels the element text embedding from this random 
point, and creates a new custom tag embedding and 
perturbs it from the element text embedding. 

4.2.3 Back-end Implementation. Micro-service APIs implemented 
with GraphQL [5] provide a single interface for vector operations 
such as inserting/updating/deleting vectors into the database, and 
fnding the nearest neighbors for an element text vector. In the 
current implementation, when a new custom tag for a previously 
unseen element text is being added to the vector database, the API 
will query GloVe for pre-trained word embeddings, which are stored 
in a separate database. A fnal custom tag embedding is computed 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zaidi and Turbeville, et al. 

by averaging the GloVe embeddings that are available for all the 
words contained in the custom tag and its associated UI text. 

In order to enable fast vector retrieval, a database powered by 
OpenSearch [2] stores the embedding vectors. For each embedding 
vector, the database stores metadata such as the user ID associated 
with its creation, and whether the vector represents a custom tag or 
element text. The vectors in the embedding space are all normalized. 
The perturbation factor in the proposed system is 0.01, meaning that 
at most a perturbed vector will be 1% diferent from the original 
vector. A perturbation factor of 0.01 performed better than 0.1 
and 0.001 in our test simulations. The attract function uses cosine 
distance to continuously pull a vector closer until the distance 
between the two vectors is below a certain threshold (0.0). The 
repel function uses cosine distance to continuously push a vector 
away until the distance between the two vectors is above a certain 
threshold (1.0). 

5 RESULTS 
We evaluated the feedback loop’s efcacy in two ways: a real-world 
deployment of the system as part of UserTesting’s platform, and 
case studies that demonstrate how custom intent feedback provided 
in one test instance can generalize to future tests. 

We deployed the machine learning feedback loop in April 2022. 
Potential feedback loop users could view participant navigation 
paths as Sankey diagrams with the system tagging interactions as 
one of the 71 terms that were part of the initial intent ontology. 
Users could edit and add tags on the Sankey diagram and optionally 
provide a reason for making the change. Interactions with the 
system were recorded along with metadata about each user, what 
custom tags they added, and their reasons for adding these custom 
tags (if any were provided). Customers of UserTesting were made 
aware of the feedback loop feature through marketing materials 
and in-product guides. Additionally, informational articles that 
taught users how to use the feedback loop feature were added to 
the UserTesting website [6]. 

To further evaluate the feedback loop’s ability to integrate domain-
specifc vocabulary into future predictions, we generated case stud-
ies for two industries. We recruited participants from UserTesting’s 
participant panel, had them perform navigation tasks on websites 
relating to these two industries, and recorded their interaction fows 
in the form of Sankey diagrams. The research team then added cus-
tom tags and observed whether intent predictions in future tests 
run on the same website would surface these custom tags. 

5.1 Real-world Deployment 
Between April 2022 and December 2022, the system interacted 
with about 157 million click path events, each represented as a 
single edge on a Sankey diagram. Of these events, 24 million (15.3%) 
contained text, meaning that it was eligible to be annotated by the 
feedback loop. The feedback loop made a total of about 6.8 million 
intent predictions. Of these predictions, 6.5 million included an 
intent that belonged to the starting ontology of 71 terms. These 
statistics reveal the proposed system is able to integrate into the 
remote usability testing platform’s infrastructure and assist users 
in automatically tagging events using the initial ontology. 

Over the course of the deployment, 34 users afliated with dif-
ferent organizations and companies opted to use this feature. The 
industries of these 34 users varied. The top fve market verticals for 
this user group were retail (� = 8), transportation (� = 5), health-
care (� = 5), software (� = 4), and IoT/hardware (� = 3). Other 
verticals included fnance, telecommunications, travel, education, 
real estate, shipping, and consulting. 

Users made 546 changes to the initial prediction tags of inter-
actions by adding custom tags. We found that 229 (41.9%) of the 
custom tags showed up in later predictions: The feedback loop used 
custom tags when provided. However, users rarely gave reasons 
for these changes, with only 11 total instances of a user providing 
feedback. Therefore, we conducted an open coding of instances 
where users changed a predicted tag from the initial ontology to 
understand the underlying reasons that users could be providing 
custom tags. 

We examined data from the 10 users (U1-U10) who changed tags 
most frequently. From these 10 users, we observed 313 instances 
of customized tags. In 99 of these 313 instances, the system pre-
dicted a tag that was a part of the initial ontology, and the user 
customized it. In 214 instances, the system did not predict a tag. 
Our codebook consisted of the following justifcations: too general, 
meaning the predicted tag was close to what the user wanted, but 
not domain-specifc enough; incorrect, meaning the predicted tag 
was completely wrong; and other. Two members of the research 
team independently coded the set of 99 instances. The inter-rater 
reliability between the two coders was a Cohen’s Kappa of 0.96, 
indicating strong alignment. 

The coding revealed that users often made customizations (� = 
64) to change tags to be more specifc (i.e., the predicted tag was 
too general): Typically, the revised tag was a more domain-specifc 
version of the predicted tag. For example, rather than use the pre-
dicted tag “search,” U5 provided “Find a doc[tor]”. Similarly, U8 
provided “Product Registration” when the predicted tag was “Cre-
ate Account”. 

The remaining instances were either a user correcting an in-
correct prediction, or classifed as “Other”. The system predicted 
tags incorrectly for two reasons. Sometimes, the system predicted 
the wrong tag in the initial ontology, such as when U1 felt that 
a specifc interaction should be classifed as “browse” rather than 
“search”. Otherwise, the incorrect tag was due to the novelty of the 
interaction, leading to a poor guess by the system: For instance, the 
system incorrectly annotated an interaction as “get info” and U2 
corrected it to “flter results”. All instances coded as “Other” were 
traced to U6, who switched back and forth between the same two 
tags within a short period of time, providing “Other” as their reason 
for making the change each time. 

These results demonstrate that users rarely provide explicit feed-
back, even when they know it will help personalize their experi-
ence. In addition, we observe that most of the users customized the 
Sankey diagrams when predicted tags lacked specifcity. Therefore, 
the proposed system assumes that the predicted tag is too general if 
users change a predicted tag but do not provide explicit justifcation 
feedback. By combining implicit and explicit feedback, we lower 
the cognitive burden on users while also improving their custom 
intent embedding spaces over time. This deployment shows that 
the feedback loop, bootstrapped by the initial ontology, is able to 
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Figure 5: A demonstration of the feedback loop on an e-commerce matress website usability test where participants were asked to add matress and bedding 
to their cart and check out. With just a few user-specified examples of new custom intents, the system can identify semantically similar UI interactions in 
future tests over the same task. 



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zaidi and Turbeville, et al. 

efectively annotate events on digital assets across organizations in 
several diferent industries at a large scale. In addition, when certain 
events require custom tags, the feedback loop is able to learn from 
user input and use these custom tags in future predictions. 

5.2 Generalization 
The real-world deployment demonstrated user interest in using 
the feedback loop as well as the system’s ability to surface cus-
tom tags in future predictions. We also demonstrate its end-to-end 
functionality, starting with initial ontology predictions of events, 
adding custom tags, and ending with these custom tags surfacing in 
later tests. We conducted UX tests with digital assets and events in 
two distinct industries — e-commerce and government — over the 
course of one week in September 2022. We selected e-commerce 
and government websites because they express diferent types of 
experience intents. For each industry, we selected a website, and 
asked people recruited from UserTesting’s proprietary participant 
panel to accomplish a website navigation task. The proposed sys-
tem collected participants’ interaction fows through the website 
interfaces and displayed them as Sankey diagrams with interactions 
annotated using the initial intent ontology. The research team up-
dated these Sankey diagrams to use a domain-specifc vocabulary, 
along with the reason for each update (“Too general”, “Incorrect”, or 
“Other”). We then recruited a new group of participants to ensure 
their interaction patterns with the website would likely be diferent 
and assigned them either the same navigation task or a diferent 
one, and observed how the customization persisted across tests: 
the system was able to leverage the user feedback and annotate 
user interactions with the custom semantic terms provided in the 
previous iteration. 

5.2.1 Generalizing to the Same Task. The frst case study comes 
from an e-commerce website that sells mattresses and other bedding 
products. The research team asked four participants recruited from 
UserTesting’s contributor panel to add several items—a mattress, 
pillow set, and bedding set—to their cart since this is a common 
user fow for the e-commerce industry. 

Initially, the system annotated this fow automatically using the 
general ontology of 71 terms that bootstrapped the embedding 
space. Some UI screens where participants viewed products or 
entered their delivery information were not annotated in the initial 
Sankey diagram of the user fow. We then manually added custom 
tags to the Sankey diagram of the user fow, flling in empty parts 
of the fow and correcting parts that were either too general or 
incorrect. For example, the initial fow recognized the frst quiz 
screen as a take quiz screen, but did not recognize the other pages 
of the quiz, since the quiz was not a quiz in the traditional sense, but 
instead tried to provide users with their most compatible mattress. 
In addition, the research team added domain-specifc language 
such as browse mattresses, change color, and browse pillows to this 
embedding space. 

After adding these custom tags, the research team recruited a 
new group of four participants to accomplish the same task on 
that website; participants visited some, but not all, of the same 
screens to do so. When the Sankey was generated for this new 
group of participants, it was already flled with the custom tags, 
demonstrating how the customization can generalize to later tests 

run by users. After just one round of feedback, the system is able to 
predict intents using the new custom tags — for interactions with 
not just the same exact UI elements or elements containing the 
same exact text —- but for interactions with semantically similar UI 
elements (Figure 5). This demonstrates that the embedding-based 
approach does not merely memorize tags but learns the semantic 
similarity of UI elements. 

5.2.2 Generalizing to a Diferent Task. The second case study is 
a government website, specifcally a United States Department of 
Motor Vehicles website. On this website, UX researchers might be 
interested in analyzing how users might fnd information about 
getting a learner’s permit, or how they might get their frst driver’s 
license. We asked a group of fve participants recruited from the 
UserTesting participant panel to fnd the requirements to get a 
learner’s permit in a particular state. Just as in the frst example, the 
system automatically annotated the user fows from the frst test 
using the general-purpose ontology.The research team then added 
domain-specifc language to the ontology, updating the embedding 
space to include custom intents such as fnd a service, permits, 
learning, and living. 

To test the feedback loop’s ability to understand these new tags, 
we launched a second test on the same DMV website. We recruited 
a diferent group of participants, and instead of getting information 
about a learner’s permit on the website, we asked them to fnd 
out how to get their driver’s license. This new task would require 
participants visit diferent but related screens to the original task. 

As expected, some of these custom tags surfaced in the new 
task’s results (Figure 6). We observe that the feedback loop is able 
to generalize to new tasks, learning UI-specifc terminology — living 
and learning — and domain-specifc tags — get services. Given that 
the task is diferent, it makes sense that we do not see task-specifc 
tags such as permits present in these user fows. 

6 DISCUSSION AND FUTURE WORK 
Although the proposed system represents a promising step towards 
a more robust workfow for tag prediction in analytics, there are a 
number of interesting avenues for future work. 

First and foremost among these is improving the predictive 
power of the embedding at the heart of the system. Although we 
used GloVe in our implementation, there are several more sophisti-
cated language models that could be employed to more naturally 
handle multi-word inputs (e.g., BERT [18], GPT-3 [10]). In fact, one 
of the most fundamental limitations of the presented system is that 
it makes tag predictions using only the text associated with a par-
ticular UI element. User interfaces, of course, comprise both visual 
and textual components: Using a multimodal embedding [14, 23] 
to learn semantic relationships between words and visual elements 
in an application could produce more robust predictions. More-
over, since user traces possess temporal context (i.e., the screens 
that precede and succeed a particular interaction) much like words 
in sentences have left and right context, it seems plausible that 
UX-specifc embedding algorithms could be developed by general-
izing natural language models like Skip-gram or continuous bag-
of-words [27]. 

While our real-world, at-scale deployment did much to validate 
the utility of the presented approach, a deeper evaluation would aid 
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Figure 6: A demonstration of the feedback loop on a Department of Motor Vehicles’ website usability test where participants were asked to register for a 
learner’s permit. With just a few user-specified examples of new custom intents, the system can tag semantically similar UI interactions in future tests over 
diferent tasks. 
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future research eforts. Future work should explore additional de-
ployment contexts and navigation activities, as well as solicit more 
direct feedback from users. For example, a longitudinal study with 
qualitative feedback from system users would provide signifcant 
insight into how the system is used and where it can be improved. 

One area of particular interest is better understanding how or-
ganizations, teams, and individuals develop tagging ontologies in 
analytics applications. While we designed the proposed system for 
large organizations, with features grounded in needfnding inter-
views focused on company-wide experiences, it remains an open 
question of how much standardization should be encouraged and 
at what level of organizational granularity. Individuals may ben-
eft from converging on a shared set of core interaction concepts, 
just as disparate analyses may require diferent ontological lenses, 
vocabularies, and terms. 
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A NEEDFINDING INTERVIEW SCRIPT 

A.1 Introduction 
Thank you for participating in this study. My name is [NAME], and 
I’m a researcher doing a study on how people use web analytics. 
I’m doing this study to understand how web analytics are used in 
other companies and what problems currently exist. 

I’m going to ask you a series of questions regarding your expe-
riences with web analytics instrumentation, and what problems 
you feel there are. We are not testing your knowledge in any way. 

https://business.adobe.com/products/analytics/adobe-analytics.html
https://opensearch.org/
https://tagmanager.google.com/
https://www.observepoint.com/
https://graphql.org/
https://help.usertesting.com/hc/en-us/articles/4403256557076-Intent-Path
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Please remember to speak your thoughts out loud and be honest 
with your feedback, both positive and negative. 

There are some team members listening in on the session as well, 
and we’re all looking for your feedback to help us improve. They 
are here to take notes but this session will be mostly a conversation 
between you and me. As a reminder, we are recording the session so 
that we can go back later and make notes, but please know that this 
recording will only be accessible to people working directly on this 
project. Is that ok with you? [If the participant declines, terminate 
the interview.] 

A.2 Background Questions 
(1) What is your current role? What are your day-to-day respon-

sibilities? 
(2) Are web analytics a part of your work? 
(a) If so, how? 

(3) How long have you been working with web analytics? 
(4) Describe your general workfow with web analytics. 
(5) What are some of the web analytics tools you use? 
(a) If more than one tool: What would you say is your most 

preferred tool/software and why? 
(6) Have you ever been involved in setting up a web analytics 

platform for your work? Please describe the process. 

A.3 Specifc Web Analytics Experiences 
(1) How long did it take for you to set up the web analytics 

platform for your work, from downloading the software to 
having it fully customized? 

(2) Now, thinking about your experience in this feld more 
broadly, what, if anything, is the most frustrating/time-consuming 
part of instrumenting web analytics? 

(3) Did you have problems getting the web analytics framework 
set up? If so, what were these problems? 

(4) If possible, can you describe some of the specifc events you 
want your web analytics to track? 

(5) How important is the terminology/tags to the analysis pro-
cess? What would happen if you did not defne the terms/tags? 

(6) How often do you add new terminology to your web analyt-
ics? 

(a) How long does it take for them to be used correctly? 
(b) Who, if anyone, defnes the terms? 
(c) Do diferent people on your team ever use diferent terms 

or tags for the same thing when working with your web 
analytics software? If so, what is the impact of that? 
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