
Learning Custom Experience Ontologies via
Embedding-based Feedback Loops

Ali Zaidi∗ Kelsey Turbeville∗ Ranjitha Kumar
University of Illinois at Kristijan Ivančić University of Illinois at

Urbana-Champaign, Urbana, IL, USA Jason Moss Urbana-Champaign, Urbana, IL, USA

Jenny Villalobos UserTesting, San Francisco, CA, USA Gutierrez
Aravind Sagar
Huiying Li

Charu Mehra
Sixuan Li

Scott Hutchins
UserTesting, San Francisco, CA, USA

ABSTRACT
Organizations increasingly rely on behavioral analytics tools like
Google Analytics to monitor their digital experiences. Making sense
of the data these tools capture, however, requires manual event tag-
ging and fltering — often a tedious process. Prior approaches have
trained machine learning models to automatically tag interaction
data, but draw from fxed digital experience vocabularies which
cannot be easily augmented or customized. This paper introduces
a novel machine learning interaction pattern that generates cus-
tomized tag predictions for organizations. The approach employs a
general user experience word embedding to bootstrap an initial set
of predictions, which can then be refned and customized by users
to adapt the underlying vector space, iteratively improving the qual-
ity of future predictions. The paper presents a needfnding study
that grounds the design choices of the system, and describes a real-
world deployment as part of UserTesting.com that demonstrates
the efcacy of the approach.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI); Visualization; Interaction design.

KEYWORDS
UX research; usability testing; clickstream analytics; Sankey dia-
grams; sequence alignment

ACM Reference Format:
Ali Zaidi, Kelsey Turbeville, Kristijan Ivančić, Jason Moss, Jenny Gutier-
rez Villalobos, Aravind Sagar, Huiying Li, Charu Mehra, Sixuan Li, Scott

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0132-0/23/10. . . $15.00
https://doi.org/10.1145/3586183.3606715

Hutchins, and Ranjitha Kumar. 2023. Learning Custom Experience On-
tologies via Embedding-based Feedback Loops. In The 36th Annual ACM
Symposium on User Interface Software and Technology (UIST ’23), October
29–November 01, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3586183.3606715

1 INTRODUCTION
To monitor digital experiences, organizations often rely on behav-
ioral analytics tools [1, 16]. These tools are powerful because they
capture most user- and system-level events (e.g., clicks, page loads)
that occur on deployed websites and applications. Rendering this
data intelligible at scale, however — for instance, to measure key
performance metrics (KPIs) such as conversion or drop-of rates —
typically requires much manual work in the form of event tagging
and fltering [8].

To perform this tagging, developers and analysts must instru-
ment the digital asset to map user actions (e.g., click, scroll) to
semantic descriptions of user intents (e.g., checkout, browse inven-
tory). Although modern analytics tools ofer interfaces to assist
with this task, it remains a time-consuming process that must be un-
dertaken each time an application — or the analysis to be performed
on it — is meaningfully altered. Prior work has demonstrated how
machine learning (ML) models can be trained to automatically tag
interaction data [17, 25, 28], but these methods draw from fxed
digital experience vocabularies which cannot be easily augmented
or customized.

This paper introduces a new interaction pattern for event tag-
ging based on ML (Figure 1). The system leverages a general user
experience (UX) word embedding to make a set of initial intent
predictions for each user action. Then, analysts can correct and
refne these predictions through interactive visualizations of the ap-
plication’s analytics data. As more feedback is given to the system,
the vector space used to encode the organization’s UX ontology is
refned and augmented via a counter-ftting algorithm [29], improv-
ing the performance of future predictions in turn. In this way, the
system allows organizations to employ their own custom semantic
vocabularies and extract more relevant insights from user analytics
data.

https://doi.org/10.1145/3586183.3606715
https://doi.org/10.1145/3586183.3606715
mailto:permissions@acm.org
https://UserTesting.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3586183.3606715&domain=pdf&date_stamp=2023-10-29

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zaidi and Turbeville, et al.

Embedding Vector
Database

(OpenSearch)

Feedback
Loop API

(GraphQL)

Nearest neighbor

results

CRUD and

counterfitting operations

User intent

feedback

Predicted

intent tag

Section 7

Figure 1: The feedback loop system comprises three parts: a front-end that captures user feedback; an API that maps the feedback to database and vector
space refinement operations; and an embedding vector database that computes nearest neighbor tags — custom and global — for a given element text query.

To inform the design of the proposed system, we conducted a
needfnding study with industry professionals who work with web
analytics data. The study confrmed the high cost of instrumen-
tation in analytics, and also revealed that tag standardization is
another key challenge in large organizations, since diferent teams
may use diferent terminology to represent similar intents. This
observation led to a second, unanticipated use of the system, which
can surface related semantic concepts between teams to promote
standardization, or allow individual teams to learn their own cus-
tom ontologies.

To evaluate the system, we implemented and deployed it as part
of UserTesting.com — the industry-leading remote usability testing
platform — for six months. Organizations leverage the UserTesting
platform to recruit third-party users to perform tasks related to
their digital assets. The platform then generates visualizations of
the paths users traced, and performs automated tagging of the
constituent interactions. We show that the system is capable of
predicting custom tags over new interactions from just a few user
refnements, and that users most often leverage the relabeling to
employ market- or domain-specifc concepts. Finally, we illustrate
the system’s capabilities in two distinct market verticals.

2 RELATED WORK
The goal of this work is not to leverage user feedback to memo-
rize the intent tags of specifc UI elements, but to learn semantic
representations of these elements that can be used to efciently
categorize the interactions that comprise a digital experience. The
proposed feedback loop seeks to mitigate pain points associated
with current event tagging tools by leveraging design semantics
and interactive machine learning techniques.

2.1 Event Tagging
Organizations primarily rely on external software tools to collect
web analytics data and monitor digital experiences. There are many
such tools on the market: Google Analytics, Google Tag Manager,
Adobe Analytics, WalkMe, ObservePoint, etc. They allow users to
manually create and assign tags to digital experiences. These tags
can then be used to organize and query specifc experiences and
compare them. All provide some level of abstraction that helps
address common pain points in event instrumentation. Consider
Google Tag Manager: while this software does give of-the-shelf

capabilities for tracking common events on a digital asset such
as when the page has loaded, the workfow becomes exceedingly
complicated when custom events become involved. Users must frst
identify the custom event they want to track, and then create event
triggers for that event using CSS element selectors. A user must set
up the tags for each event manually, and verify that data is fowing
from the Google Tag Manager to the Google Analytics interface.
This process must be repeated for each custom event [3].

While each software option provides similar functionality, the
overall look and feel of one can difer signifcantly from another [1, 4,
16]. Thus, individuals within organizations consider several smaller
factors when deciding which software tool they rely on for extract-
ing design semantics from their user fows. We investigate these
factors in detail by conducting a formative interview study with
web analytics professionals. The methodology and results of this
study are described in Section 3.

Regardless of the specifc software used, manual instrumentation
is a laborious process. Users must tag each event individually in
order for the event to receive the same tag in the future. These
systems memorize the tags for the instrumented events and cannot
generalize beyond the set of CSS element selectors that are provided.
Therefore, the proposed feedback loop utilizes design semantics to
tag interactions, allowing the system to automatically recognize
classes of UI elements that are semantically similar without manual
instrumentation.

2.2 Design Semantics
Prior work has developed approaches for predicting design seman-
tics that describe the structural (e.g., map view) and functional (e.g.,
search button, login screen) roles that design elements play in a
user experience [13, 26]. These semantics can be applied at all levels
of the design hierarchy: UI components, UI screens, and user fows
(i.e., screen sequences with interaction transitions).

At the component-level, there are classifers designed to un-
derstand the individual UI/UX elements on a given screen. These
classifers learn what components such as buttons or navigation
bars may look like on one screen, and are able to identify these same
components on diferent screens. For example, Liu et al. presented
an approach that generated semantic annotations for mobile UI
elements [26]. Zhang et al.’s work in mobile UI accessibility extracts
and evaluates individual UI elements based on how their design
semantics address accessibility heuristics [35].

https://UserTesting.com

Learning Custom Experience Ontologies via
Embedding-based Feedback Loops

Rather than predict semantic labels for each individual UI com-
ponent on a screen, other approaches aggregate component-level
features to produce an overall screen-level semantic understand-
ing. Screen2 Words uses human-generated annotations of screens
to train a model that produces text-based summaries of an entire
mobile UI screen [34]. Each summary encapsulates the purpose of
a given screen (e.g. “Page showing diferent shipping locations” or
“Page displaying diferent languages to choose”). Screen2Vec works
at the screen-level granularity as well, generating screen embed-
dings of mobile interfaces based on textual and graphical elements
present on a screen and application-level descriptions [25]. The
work demonstrates how these embeddings capture the semantic
meaning of UI screens.

Finally, other work has explored predicting design semantics for
user fows —- i.e., interaction sequences spanning multiple screens.
Wang et al.’s framework utilizes large language models (LLMs) to
extract semantic meaning from UI screen interactions [33]. The Mo-
TIF system determines the feasibility of specifc user tasks based on
input UI screens. For example, MoTIF will determine that “changing
the temperature to degrees Celsius” is feasible if screens from a
weather application are given, but not if screens from a calculator
application are given. This approach requires extracting design
semantics from multiple UI screens and bridging them together to
determine if an input task is feasible [11].

These automated approaches address some of the issues with
manual instrumentation. However, they often rely on fxed vocabu-
laries that cannot be augmented to accommodate custom types of
components, screens, or interactions. For example, some of these
approaches utilize ontologies that are bootstrapped by the RICO
dataset, a large set of mobile application designs [17]. These sets
are neither comprehensive nor specialized to a domain, meaning
that users or groups with domain-specifc ontologies cannot see
their vocabularies refected in these systems. Instead, we propose
a feedback loop that is bootstrapped with a general vocabulary,
similar to previous work, but allows for the automated expansion
of this general vocabulary through user feedback. The proposed
system predicts interactions using screens and components, and
the feedback loop allows it to generate a more dynamic training
set so that future interactions can be tagged with custom language.

2.3 Interactive Machine Learning
The proposed system leverages design principles from interactive
machine learning. User control in recommender systems is shown
to increase user satisfaction with the suggestions a system presents
[22, 24]. This control often comes in the form of “feedback” that a
user can provide to the system to indicate their level of satisfaction
with that system’s output. The granularity of this feedback can vary
between critiquing a specifc prediction the system makes (“You
were wrong to predict that I would like this show”) to critiquing a
general assumption the system made about the user (“You are wrong
in thinking I like comedy shows.”). Systems also have to balance
between enabling users to explicitly leave feedback where they can
directly tell the system that a prediction or classifcation is wrong
or correct, and implicitly leave feedback where the system will
consider its output correct if the user interacts with it (e.g. watching
a show the system recommends) and incorrect otherwise [21].

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Leveraging user feedback is common in interactive machine
learning systems [9, 12, 15, 20, 30]. Allowing for feedback often
increases system engagement: if users feel like they can have an
impact on a system they use, they are more likely to view that
system favorably [7, 32] Thus, the proposed system allows for users
to provide both explicit and implicit feedback on digital experience
tags. Over time, this feedback customizes the system to the user or
group’s specifcations, tagging digital experience data with their
custom vocabulary.

3 NEEDFINDING STUDY
In order to understand how organizations set up event tagging
and defne experience ontologies, we conducted needfnding inter-
views with fve web analytics professionals. From the subsequent
qualitative coding of these interviews, we identifed three areas of
friction that motivated the proposed system’s design: organization
workfows, event instrumentation, and tag consistency.

3.1 Methodology
We conducted moderated interviews with fve participants based in
the United States and Canada who reported using, managing, and/or
implementing web analytics as part of their professional respon-
sibilities (two males, three females, median age 34). We recruited
the participants using UserTesting, a remote experience testing
platform that has a proprietary participant panel, and compensated
them 30 US dollars for completing a 30-minute interview. The par-
ticipants worked in a variety of industries — software, insurance,
education, and consulting — and had diverse backgrounds in prod-
uct management, operations management, engineering, marketing,
and art/design. We asked participants to describe their current
role, how they use web analytics in their work, and what, if any,
challenges they encounter related to web analytics (Appendix A).
The research team conducted the interviews remotely, which were
recorded and transcribed. The research team used the transcripts
to conduct open coding and identify themes.

3.2 Workfows and Tools
The interviews revealed a wide variance in organizational approaches
to managing web analytics. Some organizations have a single person
manage the entire web analytics process, which includes writing
code to track events, setting up the tracking environment, planning
which events to track, and analyzing web analytics data (P2, P5),
while others have dedicated web analytics teams (P1, P3, P4). Some
organizations manage web analytics entirely in-house (P1, P3, P5)
while others outsource it to third parties (P2, P4). P4 felt that their
current organizational structure led to redundant requests for web
analytics data: “the most time consuming thing I’d say is...people
asking for specifc reports, people wanting to track this one button...
we’re tracking it but it’s going into this overall report... I think the
educating the users piece [is the most time consuming].” Similarly,
P2, who was also responsible for setting up and managing event
tags, when asked about their organizational and team structure said
“often times they will make requests from us that are not really doable.”
P3 felt that their company’s workfow also led to confusion, saying
“there is a barrier of communication of really knowing which team

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zaidi and Turbeville, et al.

Figure 2: The feedback loop uses a general experience vocabulary to bootstrap initial tag predictions, which are surfaced on an interactive Sankey diagram
representing user website navigation paths in the current implementation. Organizations can interact with the diagram to change system-generated intent
predictions and add new intents to their experience ontology.

needs what.” Both participants who regularly requested web analyt-
ics data to consume and participants who fulflled web analytics
requests reported problems related to their team workfows.

Moreover, all participants relied on diferent web analytics tools
and no single software package met all needs. Software mentioned
by at least one participant includes: Google Analytics 3/4 (� = 4),
Contentsquare (� = 1), WalkMe (� = 1), ObservePoint (� = 1),
Siteimprove (� = 1), Splunk (� = 1), and other in-house custom web
analytics tools (� = 2). Personal preference for specifc software
was a major driving factor for organizational adoption. In fact,
P4 described that their team uses several tools to accommodate
individual preferences. They stated that some people within their
team “have allegiance to certain tools and others with other tools...
we have like 5 tools that all do the same thing [in our workfow].”

3.3 Event Instrumentation
Even with extensive use of external software tools for manual
instrumentation, many participants (P1, P2, P4, P5) describe instru-
menting events, where a user assigns tags to assets or events on a
page, as time consuming. For example, P2 described how they in-
strumented web analytics events to track the number of clicks each
news story received on their website: each time a visitor clicked a
news story, it would trigger that story’s click event, and increment
that story’s click count. P5 explained that “setting all the events up
[is] very time consuming.” In addition, P2 described being in a state
of “constant maintenance... we’re always looking at... what’s useful
in our domain... we’re always looking for additional features [tags].”

Finding each instance of an event in code and manually instru-
menting it can be a time-consuming activity. To alleviate this pain
point, some participants use analytics templates that contain code
to recognize diferent event types and automatically tag and track
them. For example, if an organization in the e-commerce sector had
many digital assets to track events for, it could create a template for
tracking events related to purchasing products (“add to cart”, “enter
delivery information”, etc). Then, each time a new digital asset was
created, events related to purchasing would automatically be tagged

and tracked. P4 reported that their organization currently used tem-
plates which made setting up event tracking much easier: “it’s a lot
easier now to deploy new sites because we have sort of a set standard
of, you know, events that we want to track.” However, most analyt-
ics templates still require customization to detect events that are
specifc to each organization or market vertical. P4 stated that their
current templates are the result of years of manual customization.
Some organizations are dissuaded from using templates because
the overhead of customizing and maintaining them outweighs the
potential benefts. P5 said, “I would think a template could work, but
we do not [use them].”

3.4 Tag Consistency
With a lack of workfow standardization and many stakeholders,
maintaining tag consistency within and across diferent digital
assets can be challenging. P4 stated that “we had to make sure
what we’re calling in one site is the same as what we’re calling in
another site... it could take days to weeks.” Participants also reported
inefciencies due to inconsistent tracking, and problems arising
with new custom tags or changes to existing tags. These changes
force organizations to ensure that all corresponding events across
websites or products were assigned the new tag: “ we track[ed]
internal clicks diferent than external clicks, but then the directive
came down [to] treat them all together... we have to go into the tag
manager and delete the internal and external click tag, and create one
tag that tracks both... and have to do that on every website” (P4).

Overall, participants revealed that leveraging current tools still
resulted in a lengthy and continuous process of ontology initial-
ization followed by maintenance. Often this process led to tagging
inconsistencies within a single organization, which signifcantly
impacted the efcacy of using web analytics. Without tag consis-
tency, participants said that it would be difcult to trust any insights
gained from these web analytics.

Learning Custom Experience Ontologies via
Embedding-based Feedback Loops UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

element_text_embedding
in database?

custom_tag_embedding in
database?

custom_tag_embedding in
database?

No

 Create custom_tag_embedding
 Perturb from

element_text_embedding_copy

 Attract
element_text_embedding_copy
to custom_tag_embedding

 Create custom_tag_embedding
by querying language mode

 Create
element_text_embedding &

 Perturb from
custom_tag_embedding

 Create
element_text_embedding &

 Perturb from
custom_tag_embedding

Yes

Yes

 Create
element_text_embedding_copy if
needed

Yes

Can the language model
produce an embedding of
the custom tag or element

text?

No

Yes

 Initialize a random
element_text_embeddin

 Create
custom_tag_embedding

 Perturb from
element_text_embedding

No

Predicted tag is...

No

 Repel
element_text_embedding_copy
from predicted_tag_embeddin

 Create custom_tag_embedding
 Perturb from

element_text_embedding_copy

 Create custom_tag_embedding
 Perturb from

predicted_tag_embeddin

 Attract
element_text_embedding to
custom_tag_embedding

Null Incorrect Too general

Section 6

Figure 3: The system leverages vector space refinement operations to add custom tag embeddings to the database and update organization-specific copies
of the element text embeddings based on user feedback.

4 CUSTOM UX ONTOLOGY PREDICTION Based on these updates, the back-end can predict semantically sim-
ilar interactions using the user-defned language. Moreover, we
designed this approach to promote consistency when deployed in
an organization where many users provide feedback to the system.
The system favors used terms more frequently, allowing the orga-
nizations to reinforce a cleaner experience ontology over time. We
implemented and deployed all parts of the feedback loop as part of
UserTesting’s platform for remote experience testing.

Based on the needfnding interviews, we designed a machine learn-
ing feedback loop for event tagging that facilitates automation while
also supporting customization and consistency (Figure 1). This ap-
proach relies on an initial set of intent tags and an of-the-shelf
language model to bootstrap predictions. Through a feedback inter-
face, users can refne system-generated predictions. The back-end
leverages this feedback to add terms to the initial intent ontology
and customize the embedding vector representations of its terms.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zaidi and Turbeville, et al.

4.1 Front-end for Capturing Feedback
The UserTesting platform for remote experience testing provides in-
teractive Sankey diagrams to visualize participant journeys through
digital assets such as websites. Each bar in the Sankey diagram
denotes a UI screen and the edge between bars represents the inter-
action taken to navigate between the two screens. These diagrams
are used in UX research analysis to identify common navigation
patterns as well as anomalous behaviors.

We implemented the feedback loop’s user interface as part of
this feature, overlaying system-generated intent predictions on the
Sankey edges, and allowed users to refne them (Figure 2). The sys-
tem uses an initial set of intent tags and an of-the-shelf language
model to bootstrap predictions. For this implementation, predic-
tions are based on the text contained within the elements that a
participant interacts with. For example, if a user clicks on a button
containing the text “Sign in with Google,” that Sankey interaction
edge could be tagged with the intent “Sign in.” If the element that
a participant interacts with contains no text or the system cannot
predict an intent for the text contained within it, the Sankey edge
will not display any tag.

Users can click on the Sankey edges to update system-generated
intents or add an intent where the system did not supply one.
User-created intent tags can already exist in the global or custom
experience ontology, or may be entirely new. When users update
a Sankey edge tagged with a system-predicted tag, they can have
that change be applied to all edges with the same system-predicted
tag. Additionally, they can provide a rationale for the update: “too
general,” “inaccurate,” or “other.” These updates and rationales are
then sent to the back-end as feedback for the feedback loop to ingest
and modify the embedding space.

4.2 Back-end for Updating Embeddings
The system’s back-end modifes the custom embedding space via
an API that maps the user feedback to CRUD and vector space
refnement operations over an embedding vector database. The
vector database comprises embeddings for global tags, which are
part of every experience ontology, and organization-specifc custom
tags. The back-end predicts custom and global intent tags for user
interactions as nearest neighbor queries over the vector database.

4.2.1 Global Embedding Space Initialization. We initialize the feed-
back loop with a “global” experience ontology and an of-the-shelf
language model to automatically tag common user interactions.
The starting vocabulary comprises 71 common interactions a user
might perform when navigating an interface. It includes behav-
ioral and industry-based words and phrases (e.g., “exploration,”
“collaboration,” “purchase,” and “favorite”).

To ensure that the ontology was comprehensive, we interviewed
10 user behavior analysts about their interaction coding practices.
The analysts were recruited from a variety of industries, including
travel, e-commerce, and education. From this research, we created
a preliminary ontology, which we sent to 15 additional analysts
recruited from UserTesting’s proprietary panel and asked them to
highlight user intents they commonly saw and add any that were
missing. Based on this second round of research, we created a fnal
global experience ontology comprising 71 intents, which are part of
all custom experience ontologies. If an organization has not defned

any custom intent tags, the system will draw all predicted tags from
the global ontology.

To bootstrap tag prediction, we insert into the vector database
embeddings for each intent in the global ontology and any textual
phrases that could appear in interactive UI elements that are often
associated with each global intent, which we manually enumerate
based on data collected during our research and found in prior
work [26]. For instance, “add to cart” is mapped to phrases such as
“add to bag” and “add to basket.”

We compute embedding vectors for each term in the global
ontology based on GloVe [31], a language model used to encode
design semantics in prior work [34]. If a global intent tag is one
word, we use the pre-trained GloVe embedding vector for this word
is used to represent the tag in the vector database. For multi-word
tags (e.g. ‘Add to cart’), two researchers independently selected a
single word from the phrase that best captured its semantic meaning.
If both researchers agreed on the representative word, we inserted
this word’s GloVe embedding into the vector database for the intent
tag. If the researchers disagreed, a third researcher broke the tie.
This approach is agnostic to the language model we use to compute
embedding vectors. For example, in the future, we can use models
that accept sequential input to produce embedding vectors such as
transformers (e.g., BERT [18]) without modifying the rest of the
feedback loop logic.

Once we compute a vector embedding for a global intent tag, we
can compute the embedding vectors for its related UI element texts
by copying the intent tag’s embedding and perturbing it to a nearby
point in the embedding space. For example, the embedding for the
element text "add to cart" would be near the pre-trained embeddings
for the global intent tags "buy" and "purchase." Therefore, when
the system performs a nearest neighbor search to predict intent
tags, the UI element text queries are mapped to the right intent
tags. Incidentally, the global experience ontology and tag prediction
architecture could serve as the general template for web analytics
workfows mentioned by some participants during the needfnding
interviews. Allowing users to start with a set of common tags and
tracked interactions could decrease the time spent setting up initial
analytics frameworks.

4.2.2 Custom Embedding Space Refinement. While tag prediction
over a global intent embedding space obviates initial setup costs,
organizations often want to customize event tagging. Therefore, the
system allows users to create custom experience ontologies by pro-
viding feedback on intent predictions. The feedback loop seamlessly
integrates with the tag prediction architecture through an API that
maps user feedback to database operations that shape custom em-
bedding spaces for each organization. This approach draws upon
prior methods for refning vector spaces based on incorporating
new domain-specifc terminology and linguistic constraints [19, 29].
While these methods are focused on fne-tuning global vector
spaces, we can apply similar techniques at the organization-level
to shape each custom embedding space.

Through feedback, users can introduce new custom tags to their
experience ontology and redefne the meaning of global and custom
tags in the custom embedding space. Since the nearest neighbor
search to compute intent for a user interaction is based on the
interaction’s UI element text embedding, we shape the custom

Learning Custom Experience Ontologies via
Embedding-based Feedback Loops UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 4: When a user provides feedback that the predicted tag is “too general,” the system creates a custom tag embedding perturbed from the predicted
embedding, and atracts the organization-specific copy of the element text embedding to the custom tag embedding. When the predicted tag is deemed
“inaccurate,” the system repels the element text embedding copy from the predicted embedding, and creates a custom tag embedding perturbed from the
updated element text embedding copy.

embedding spaces—i.e., defne the semantic meaning of intent tags—
by moving around UI element text vectors. There are four types
of vector space refnement operations the API can perform: It can
create and insert new tag and element text embeddings into the
vector database; perturb vector representations by adding random
noise; attract an element text embedding closer to a tag embedding
vector to minimize the semantic distance between them; and repel
an element text embedding away from a tag embedding vector to
establish greater semantic distance between them.

The API determines the set of vector space refnement opera-
tions to execute based on the user feedback (Figure 3). When a
user provides intent feedback, the front-end provides the API with
the following data: a user provided custom tag describing an in-
teraction, the interaction’s UI element text, a system-generated
predicted tag if it existed, and a rationale for the intent update
if the user provided one.

If the element text embedding already exists in the database:

• The system checks whether an organization-specifc copy
of the element text embedding also exists. If it does not,
the system creates an element text embedding copy and
perturbs it from the existing element text embedding.

• If the custom tag embedding exists in the embedding vector
database, the system attracts the element text embedding
copy to the custom tag embedding to minimize the semantic
distance between them.

• If the custom tag embedding does not exist in the vector
database, the system’s actions depend on the value of the
predicted tag.
– If the predicted tag is null (i.e., the Sankey edge ini-
tially had no label), the system creates a new custom
tag embedding and perturbs it from the element text
embedding copy.

– If the predicted tag is incorrect, the system repels
the element text embedding copy from the predicted
tag embedding. The system then creates a new custom
tag embedding and perturbs it from the element text
embedding copy (Figure 4).

– If the predicted tag is too general or no update ra-
tionale is provided, the system creates a new custom
tag embedding and perturbs it from the predicted tag
embedding. The system then attracts the element text
embedding copy to the new custom tag embedding (Figure
4).

– If the update rationale is other, the system takes no action
and waits for the update to be reviewed by a person.

If the element text embedding does not exist in the database:

• If the custom tag embedding already exists in the vector
database, the system creates a new element text embed-
ding and perturbs it from the custom tag embedding.

• If the custom tag embedding does not exist in the em-
bedding vector database, the system’s actions depend on
whether the language model being used can produce an
embedding vector for the element text or custom tag.
– If the language model can produce an embedding for the
custom tag or element text, the system creates a new
custom tag embedding by querying the language model.
The system then creates a new element text embedding
and perturbs it from the custom tag embedding.

– If the language model cannot produce an embedding for
either the custom tag or element text, then the system
creates a new element text embedding and places it at
a random point in the embedding space. The system then
repels the element text embedding from this random
point, and creates a new custom tag embedding and
perturbs it from the element text embedding.

4.2.3 Back-end Implementation. Micro-service APIs implemented
with GraphQL [5] provide a single interface for vector operations
such as inserting/updating/deleting vectors into the database, and
fnding the nearest neighbors for an element text vector. In the
current implementation, when a new custom tag for a previously
unseen element text is being added to the vector database, the API
will query GloVe for pre-trained word embeddings, which are stored
in a separate database. A fnal custom tag embedding is computed

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zaidi and Turbeville, et al.

by averaging the GloVe embeddings that are available for all the
words contained in the custom tag and its associated UI text.

In order to enable fast vector retrieval, a database powered by
OpenSearch [2] stores the embedding vectors. For each embedding
vector, the database stores metadata such as the user ID associated
with its creation, and whether the vector represents a custom tag or
element text. The vectors in the embedding space are all normalized.
The perturbation factor in the proposed system is 0.01, meaning that
at most a perturbed vector will be 1% diferent from the original
vector. A perturbation factor of 0.01 performed better than 0.1
and 0.001 in our test simulations. The attract function uses cosine
distance to continuously pull a vector closer until the distance
between the two vectors is below a certain threshold (0.0). The
repel function uses cosine distance to continuously push a vector
away until the distance between the two vectors is above a certain
threshold (1.0).

5 RESULTS
We evaluated the feedback loop’s efcacy in two ways: a real-world
deployment of the system as part of UserTesting’s platform, and
case studies that demonstrate how custom intent feedback provided
in one test instance can generalize to future tests.

We deployed the machine learning feedback loop in April 2022.
Potential feedback loop users could view participant navigation
paths as Sankey diagrams with the system tagging interactions as
one of the 71 terms that were part of the initial intent ontology.
Users could edit and add tags on the Sankey diagram and optionally
provide a reason for making the change. Interactions with the
system were recorded along with metadata about each user, what
custom tags they added, and their reasons for adding these custom
tags (if any were provided). Customers of UserTesting were made
aware of the feedback loop feature through marketing materials
and in-product guides. Additionally, informational articles that
taught users how to use the feedback loop feature were added to
the UserTesting website [6].

To further evaluate the feedback loop’s ability to integrate domain-
specifc vocabulary into future predictions, we generated case stud-
ies for two industries. We recruited participants from UserTesting’s
participant panel, had them perform navigation tasks on websites
relating to these two industries, and recorded their interaction fows
in the form of Sankey diagrams. The research team then added cus-
tom tags and observed whether intent predictions in future tests
run on the same website would surface these custom tags.

5.1 Real-world Deployment
Between April 2022 and December 2022, the system interacted
with about 157 million click path events, each represented as a
single edge on a Sankey diagram. Of these events, 24 million (15.3%)
contained text, meaning that it was eligible to be annotated by the
feedback loop. The feedback loop made a total of about 6.8 million
intent predictions. Of these predictions, 6.5 million included an
intent that belonged to the starting ontology of 71 terms. These
statistics reveal the proposed system is able to integrate into the
remote usability testing platform’s infrastructure and assist users
in automatically tagging events using the initial ontology.

Over the course of the deployment, 34 users afliated with dif-
ferent organizations and companies opted to use this feature. The
industries of these 34 users varied. The top fve market verticals for
this user group were retail (� = 8), transportation (� = 5), health-
care (� = 5), software (� = 4), and IoT/hardware (� = 3). Other
verticals included fnance, telecommunications, travel, education,
real estate, shipping, and consulting.

Users made 546 changes to the initial prediction tags of inter-
actions by adding custom tags. We found that 229 (41.9%) of the
custom tags showed up in later predictions: The feedback loop used
custom tags when provided. However, users rarely gave reasons
for these changes, with only 11 total instances of a user providing
feedback. Therefore, we conducted an open coding of instances
where users changed a predicted tag from the initial ontology to
understand the underlying reasons that users could be providing
custom tags.

We examined data from the 10 users (U1-U10) who changed tags
most frequently. From these 10 users, we observed 313 instances
of customized tags. In 99 of these 313 instances, the system pre-
dicted a tag that was a part of the initial ontology, and the user
customized it. In 214 instances, the system did not predict a tag.
Our codebook consisted of the following justifcations: too general,
meaning the predicted tag was close to what the user wanted, but
not domain-specifc enough; incorrect, meaning the predicted tag
was completely wrong; and other. Two members of the research
team independently coded the set of 99 instances. The inter-rater
reliability between the two coders was a Cohen’s Kappa of 0.96,
indicating strong alignment.

The coding revealed that users often made customizations (� =
64) to change tags to be more specifc (i.e., the predicted tag was
too general): Typically, the revised tag was a more domain-specifc
version of the predicted tag. For example, rather than use the pre-
dicted tag “search,” U5 provided “Find a doc[tor]”. Similarly, U8
provided “Product Registration” when the predicted tag was “Cre-
ate Account”.

The remaining instances were either a user correcting an in-
correct prediction, or classifed as “Other”. The system predicted
tags incorrectly for two reasons. Sometimes, the system predicted
the wrong tag in the initial ontology, such as when U1 felt that
a specifc interaction should be classifed as “browse” rather than
“search”. Otherwise, the incorrect tag was due to the novelty of the
interaction, leading to a poor guess by the system: For instance, the
system incorrectly annotated an interaction as “get info” and U2
corrected it to “flter results”. All instances coded as “Other” were
traced to U6, who switched back and forth between the same two
tags within a short period of time, providing “Other” as their reason
for making the change each time.

These results demonstrate that users rarely provide explicit feed-
back, even when they know it will help personalize their experi-
ence. In addition, we observe that most of the users customized the
Sankey diagrams when predicted tags lacked specifcity. Therefore,
the proposed system assumes that the predicted tag is too general if
users change a predicted tag but do not provide explicit justifcation
feedback. By combining implicit and explicit feedback, we lower
the cognitive burden on users while also improving their custom
intent embedding spaces over time. This deployment shows that
the feedback loop, bootstrapped by the initial ontology, is able to

Learning Custom Experience Ontologies via
Embedding-based Feedback Loops UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 5: A demonstration of the feedback loop on an e-commerce matress website usability test where participants were asked to add matress and bedding
to their cart and check out. With just a few user-specified examples of new custom intents, the system can identify semantically similar UI interactions in
future tests over the same task.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zaidi and Turbeville, et al.

efectively annotate events on digital assets across organizations in
several diferent industries at a large scale. In addition, when certain
events require custom tags, the feedback loop is able to learn from
user input and use these custom tags in future predictions.

5.2 Generalization
The real-world deployment demonstrated user interest in using
the feedback loop as well as the system’s ability to surface cus-
tom tags in future predictions. We also demonstrate its end-to-end
functionality, starting with initial ontology predictions of events,
adding custom tags, and ending with these custom tags surfacing in
later tests. We conducted UX tests with digital assets and events in
two distinct industries — e-commerce and government — over the
course of one week in September 2022. We selected e-commerce
and government websites because they express diferent types of
experience intents. For each industry, we selected a website, and
asked people recruited from UserTesting’s proprietary participant
panel to accomplish a website navigation task. The proposed sys-
tem collected participants’ interaction fows through the website
interfaces and displayed them as Sankey diagrams with interactions
annotated using the initial intent ontology. The research team up-
dated these Sankey diagrams to use a domain-specifc vocabulary,
along with the reason for each update (“Too general”, “Incorrect”, or
“Other”). We then recruited a new group of participants to ensure
their interaction patterns with the website would likely be diferent
and assigned them either the same navigation task or a diferent
one, and observed how the customization persisted across tests:
the system was able to leverage the user feedback and annotate
user interactions with the custom semantic terms provided in the
previous iteration.

5.2.1 Generalizing to the Same Task. The frst case study comes
from an e-commerce website that sells mattresses and other bedding
products. The research team asked four participants recruited from
UserTesting’s contributor panel to add several items—a mattress,
pillow set, and bedding set—to their cart since this is a common
user fow for the e-commerce industry.

Initially, the system annotated this fow automatically using the
general ontology of 71 terms that bootstrapped the embedding
space. Some UI screens where participants viewed products or
entered their delivery information were not annotated in the initial
Sankey diagram of the user fow. We then manually added custom
tags to the Sankey diagram of the user fow, flling in empty parts
of the fow and correcting parts that were either too general or
incorrect. For example, the initial fow recognized the frst quiz
screen as a take quiz screen, but did not recognize the other pages
of the quiz, since the quiz was not a quiz in the traditional sense, but
instead tried to provide users with their most compatible mattress.
In addition, the research team added domain-specifc language
such as browse mattresses, change color, and browse pillows to this
embedding space.

After adding these custom tags, the research team recruited a
new group of four participants to accomplish the same task on
that website; participants visited some, but not all, of the same
screens to do so. When the Sankey was generated for this new
group of participants, it was already flled with the custom tags,
demonstrating how the customization can generalize to later tests

run by users. After just one round of feedback, the system is able to
predict intents using the new custom tags — for interactions with
not just the same exact UI elements or elements containing the
same exact text —- but for interactions with semantically similar UI
elements (Figure 5). This demonstrates that the embedding-based
approach does not merely memorize tags but learns the semantic
similarity of UI elements.

5.2.2 Generalizing to a Diferent Task. The second case study is
a government website, specifcally a United States Department of
Motor Vehicles website. On this website, UX researchers might be
interested in analyzing how users might fnd information about
getting a learner’s permit, or how they might get their frst driver’s
license. We asked a group of fve participants recruited from the
UserTesting participant panel to fnd the requirements to get a
learner’s permit in a particular state. Just as in the frst example, the
system automatically annotated the user fows from the frst test
using the general-purpose ontology.The research team then added
domain-specifc language to the ontology, updating the embedding
space to include custom intents such as fnd a service, permits,
learning, and living.

To test the feedback loop’s ability to understand these new tags,
we launched a second test on the same DMV website. We recruited
a diferent group of participants, and instead of getting information
about a learner’s permit on the website, we asked them to fnd
out how to get their driver’s license. This new task would require
participants visit diferent but related screens to the original task.

As expected, some of these custom tags surfaced in the new
task’s results (Figure 6). We observe that the feedback loop is able
to generalize to new tasks, learning UI-specifc terminology — living
and learning — and domain-specifc tags — get services. Given that
the task is diferent, it makes sense that we do not see task-specifc
tags such as permits present in these user fows.

6 DISCUSSION AND FUTURE WORK
Although the proposed system represents a promising step towards
a more robust workfow for tag prediction in analytics, there are a
number of interesting avenues for future work.

First and foremost among these is improving the predictive
power of the embedding at the heart of the system. Although we
used GloVe in our implementation, there are several more sophisti-
cated language models that could be employed to more naturally
handle multi-word inputs (e.g., BERT [18], GPT-3 [10]). In fact, one
of the most fundamental limitations of the presented system is that
it makes tag predictions using only the text associated with a par-
ticular UI element. User interfaces, of course, comprise both visual
and textual components: Using a multimodal embedding [14, 23]
to learn semantic relationships between words and visual elements
in an application could produce more robust predictions. More-
over, since user traces possess temporal context (i.e., the screens
that precede and succeed a particular interaction) much like words
in sentences have left and right context, it seems plausible that
UX-specifc embedding algorithms could be developed by general-
izing natural language models like Skip-gram or continuous bag-
of-words [27].

While our real-world, at-scale deployment did much to validate
the utility of the presented approach, a deeper evaluation would aid

Learning Custom Experience Ontologies via
Embedding-based Feedback Loops UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 6: A demonstration of the feedback loop on a Department of Motor Vehicles’ website usability test where participants were asked to register for a
learner’s permit. With just a few user-specified examples of new custom intents, the system can tag semantically similar UI interactions in future tests over
diferent tasks.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

future research eforts. Future work should explore additional de-
ployment contexts and navigation activities, as well as solicit more
direct feedback from users. For example, a longitudinal study with
qualitative feedback from system users would provide signifcant
insight into how the system is used and where it can be improved.

One area of particular interest is better understanding how or-
ganizations, teams, and individuals develop tagging ontologies in
analytics applications. While we designed the proposed system for
large organizations, with features grounded in needfnding inter-
views focused on company-wide experiences, it remains an open
question of how much standardization should be encouraged and
at what level of organizational granularity. Individuals may ben-
eft from converging on a shared set of core interaction concepts,
just as disparate analyses may require diferent ontological lenses,
vocabularies, and terms.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their helpful
comments and suggestions. We would like to thank Jerry O. Talton
for his generative and discriminative insights; Erin Boehmer and
Peter A. Combs for their helpful comments on initial drafts of this
paper; and Kaj van de Loo and Akash Sagar for their technical
guidance in the early stages of this project. Finally, we would like to
thank Jian Jin, Luca Santarelli, Mahsa Forati, Rachad Saab, and Sam
Stevens for their eforts in deploying this work in a real system.

REFERENCES
[1] 2022. https://business.adobe.com/products/analytics/adobe-analytics.html
[2] 2022. https://opensearch.org/
[3] 2023. https://tagmanager.google.com/
[4] 2023. https://www.observepoint.com/
[5] 2023. https://graphql.org/
[6] 2023. https://help.usertesting.com/hc/en-us/articles/4403256557076-Intent-Path
[7] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.

Power to the people: The role of humans in interactive machine learning. In AI
Magazine. 105–120.

[8] Michael Beasley. 2013. Practical web analytics for user experience: How analytics
can help you understand your users. Newnes.

[9] Jefrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg Little, Andrew Miller,
Robert C Miller, Robin Miller, Aubrey Tatarowicz, Brandyn White, Samual White,
et al. 2010. Vizwiz: nearly real-time answers to visual questions. In ACM Sympo-
sium on User Interface Software and Technology. 333–342.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In ACM Conference
and Workshop on Neural Information Processing Systems. 1877–1901.

[11] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and
Bryan A Plummer. 2022. A Dataset for Interactive Vision-Language Navigation
with Unknown Command Feasibility. In European Conference on Computer Vision.
312–328.

[12] Joseph Chee Chang, Aniket Kittur, and Nathan Hahn. 2016. Alloy: Clustering
with crowds and computation. In CHI Conference on Human Factors in Computing
Systems. 3180–3191.

[13] Chunyang Chen, Sidong Feng, Zhengyang Liu, Zhenchang Xing, and Shengdong
Zhao. 2020. From lost to found: Discover missing ui design semantics through
recovering missing tags. In ACM Conference on Computer Supported Cooperative
Work and Social Computing. 1–22.

[14] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. 2019. UNITER: Learning UNiversal Image-TExt
Representations. In European Conference on Computer Vision. 104–120.

[15] Justin Cheng and Michael S Bernstein. 2015. Flock: Hybrid crowd-machine
learning classifers. In ACM Conference on Computer Supported Cooperative Work
and Social Computing. 600–611.

[16] Brian Clifton. 2012. Advanced web metrics with Google Analytics. John Wiley &
Sons.

[17] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset for

Zaidi and Turbeville, et al.

building data-driven design applications. In ACM Symposium on User Interface
Software and Technology. 845–854.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 1–16.

[19] Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard Hovy,
and Noah A. Smith. 2015. Retroftting Word Vectors to Semantic Lexicons. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 1606–1615.

[20] Chieh-Yang Huang, Shih-Hong Huang, and Ting-Hao Kenneth Huang. 2020.
Heteroglossia: In-situ story ideation with the crowd. In CHI Conference on Human
Factors in Computing Systems. 1–12.

[21] Dietmar Jannach, Sidra Naveed, and Michael Jugovac. 2017. User control in
recommender systems: Overview and interaction challenges. In International
Conference of E-Commerce and Web Technologies. 21–33.

[22] Yucheng Jin, Bruno Cardoso, and Katrien Verbert. 2017. How do diferent levels
of user control afect cognitive load and acceptance of recommendations?. In
ACM Conference on Recommender Systems. 35–42.

[23] Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel. 2014. Unifying Visual-
Semantic Embeddings with Multimodal Neural Language Models. In ACM Con-
ference and Workshop on Neural Information Processing Systems. 1–13.

[24] Bart P Knijnenburg, Svetlin Bostandjiev, John O’Donovan, and Alfred Kobsa.
2012. Inspectability and control in social recommenders. In ACM Conference on
Recommender Systems. 43–50.

[25] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2vec: Semantic embedding of gui screens and gui components. In CHI
Conference on Human Factors in Computing Systems. 1–15.

[26] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In ACM Symposium on
User Interface Software and Technology. 569–579.

[27] Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jefrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In ACM Conference and Workshop on Neural Information Processing Systems. 1–9.

[28] Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett, and
Denys Poshyvanyk. 2018. Machine learning-based prototyping of graphical user
interfaces for mobile apps. In IEEE Transactions on Software Engineering. 196–221.

[29] Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić, Lina M.
Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016. Counter-ftting Word Vectors to Linguistic Constraints. In Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 142–148.

[30] Michael Nebeling, Alexandra To, Anhong Guo, Adrian A de Freitas, Jaime Teevan,
Steven P Dow, and Jefrey P Bigham. 2016. WearWrite: Crowd-assisted writing
from smartwatches. In CHI Conference on Human Factors in Computing Systems.
3834–3846.

[31] Jefrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Conference on Empirical Methods in
Natural Language Processing. 1532–1543.

[32] Kristen Vaccaro, Dylan Huang, Motahhare Eslami, Christian Sandvig, Kevin
Hamilton, and Karrie Karahalios. 2018. The illusion of control: Placebo efects
of control settings. In CHI Conference on Human Factors in Computing Systems.
1–13.

[33] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling conversational interaction
with mobile ui using large language models. In CHI Conference on Human Factors
in Computing Systems. 1–17.

[34] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2words: Automatic mobile UI summarization with multimodal
learning. In ACM Symposium on User Interface Software and Technology. 498–510.

[35] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jefrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
recognition: Creating accessibility metadata for mobile applications from pixels.
In CHI Conference on Human Factors in Computing Systems. 1–15.

A NEEDFINDING INTERVIEW SCRIPT

A.1 Introduction
Thank you for participating in this study. My name is [NAME], and
I’m a researcher doing a study on how people use web analytics.
I’m doing this study to understand how web analytics are used in
other companies and what problems currently exist.

I’m going to ask you a series of questions regarding your expe-
riences with web analytics instrumentation, and what problems
you feel there are. We are not testing your knowledge in any way.

https://business.adobe.com/products/analytics/adobe-analytics.html
https://opensearch.org/
https://tagmanager.google.com/
https://www.observepoint.com/
https://graphql.org/
https://help.usertesting.com/hc/en-us/articles/4403256557076-Intent-Path

Learning Custom Experience Ontologies via
Embedding-based Feedback Loops UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Please remember to speak your thoughts out loud and be honest
with your feedback, both positive and negative.

There are some team members listening in on the session as well,
and we’re all looking for your feedback to help us improve. They
are here to take notes but this session will be mostly a conversation
between you and me. As a reminder, we are recording the session so
that we can go back later and make notes, but please know that this
recording will only be accessible to people working directly on this
project. Is that ok with you? [If the participant declines, terminate
the interview.]

A.2 Background Questions
(1) What is your current role? What are your day-to-day respon-

sibilities?
(2) Are web analytics a part of your work?
(a) If so, how?

(3) How long have you been working with web analytics?
(4) Describe your general workfow with web analytics.
(5) What are some of the web analytics tools you use?
(a) If more than one tool: What would you say is your most

preferred tool/software and why?
(6) Have you ever been involved in setting up a web analytics

platform for your work? Please describe the process.

A.3 Specifc Web Analytics Experiences
(1) How long did it take for you to set up the web analytics

platform for your work, from downloading the software to
having it fully customized?

(2) Now, thinking about your experience in this feld more
broadly, what, if anything, is the most frustrating/time-consuming
part of instrumenting web analytics?

(3) Did you have problems getting the web analytics framework
set up? If so, what were these problems?

(4) If possible, can you describe some of the specifc events you
want your web analytics to track?

(5) How important is the terminology/tags to the analysis pro-
cess? What would happen if you did not defne the terms/tags?

(6) How often do you add new terminology to your web analyt-
ics?

(a) How long does it take for them to be used correctly?
(b) Who, if anyone, defnes the terms?
(c) Do diferent people on your team ever use diferent terms

or tags for the same thing when working with your web
analytics software? If so, what is the impact of that?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Event Tagging
	2.2 Design Semantics
	2.3 Interactive Machine Learning

	3 Needfinding Study
	3.1 Methodology
	3.2 Workflows and Tools
	3.3 Event Instrumentation
	3.4 Tag Consistency

	4 Custom UX Ontology Prediction
	4.1 Front-end for Capturing Feedback
	4.2 Back-end for Updating Embeddings

	5 Results
	5.1 Real-world Deployment
	5.2 Generalization

	6 Discussion and Future Work
	Acknowledgments
	References
	A Needfinding Interview Script
	A.1 Introduction
	A.2 Background Questions
	A.3 Specific Web Analytics Experiences

