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ABSTRACT
Data-driven models help mobile app designers understand
best practices and trends, and can be used to make predic-
tions about design performance and support the creation of
adaptive UIs. This paper presents Rico, the largest repository
of mobile app designs to date, created to support five classes
of data-driven applications: design search, UI layout genera-
tion, UI code generation, user interaction modeling, and user
perception prediction. To create Rico, we built a system that
combines crowdsourcing and automation to scalably mine de-
sign and interaction data from Android apps at runtime. The
Rico dataset contains design data from more than 9.7k An-
droid apps spanning 27 categories. It exposes visual, tex-
tual, structural, and interactive design properties of more than
72k unique UI screens. To demonstrate the kinds of applica-
tions that Rico enables, we present results from training an
autoencoder for UI layout similarity, which supports query-
by-example search over UIs.
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INTRODUCTION
Data-driven models of design can scaffold the creation of mo-
bile apps. Having access to relevant examples helps design-
ers understand best practices and trends [13, 14, 23]. In the
future, data-driven models will enable systems that can pre-
dict whether a design will achieve its specified goals before
it is deployed to millions of people, and scale the creation of
personalized designs that automatically adapt to diverse users
and contexts. To build these models, researchers require de-
sign datasets which expose the details of mobile app designs
at scale.
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Figure 1: Rico is a design dataset with 72k UIs mined from 9.7k
free Android apps using a combination of human and automated ex-
ploration. The dataset can power a number of design applications,
including ones that require training state-of-the-art machine learning
models.

This paper presents Rico1, the largest repository of mobile
app designs to date, comprising visual, textual, structural,
and interactive properties of UIs. These properties can be
combined in different ways to support five classes of data-
driven applications: design search, UI layout generation, UI
code generation, user interaction modeling, and user percep-
tion prediction.

Rico was built by mining Android apps at runtime via human-
powered and programmatic exploration (Figure 1). Like its
predecessor ERICA [11], Rico’s app mining infrastructure re-

1Rico — a Spanish word meaning “rich” — is available for
download at http://interactionmining.org/rico, and will be
served there until at least 2022.
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Figure 2: A comparison of Rico with other popular app datasets.

quires no access to — or modification of — an app’s source
code. Apps are downloaded from the Google Play Store and
served to crowd workers through a web interface. When
crowd workers use an app, the system records a user inter-
action trace that captures the UIs visited and the interactions
performed on them. Then, an automated agent replays the
trace to warm up a new copy of the app, and continues the
exploration programmatically. By combining crowdsourcing
and automation, Rico can achieve higher coverage over an
app’s UI states than either crawling strategy alone.

The Rico dataset contains design and interaction data for
72, 219 UIs from 9, 772 apps, spanning 27 Google Play cate-
gories. For each app, Rico presents a collection of individual
user interaction traces, as well as a collection of unique UIs
determined by a novel content-agnostic similarity heuristic.
Additionally, since the Rico dataset is large enough to sup-
port deep-learning applications, each UI is annotated with a
low-dimensional vector produced by training an autoencoder
for UI layout similarity, which can be used to cluster and re-
trieve similar UIs from different apps.

ANDROID APP DATASETS
Existing Android app datasets expose different kinds of in-
formation: Google Play Store metadata (e.g., reviews, rat-
ings) [2, 16], software engineering and security related infor-
mation [38, 15], and design data [33, 4, 11]. Rico captures
both design data and Google Play Store metadata.

Mobile app designs comprise several different components,
including user interaction flows (e.g., search, login), UI lay-
outs, visual styles, and motion details. These components can
be computed by mining and combining different types of app
data. For example, combining the structural representation of
UIs — Android view hierarchies [3] — with the visual real-
ization of those UIs — screenshots — can help explicate app
layouts and their visual stylings. Similarly, combining user
interaction details with view hierarchies and screenshots can
help identify the user flows that apps are designed to support.

Figure 2 compares Rico with other popular datasets that ex-
pose app design information. Design datasets created by stat-
ically mining app packages contain view hierarchies, but can-
not capture data created at runtime such as screenshots or in-
teraction details [33, 4]. ERICA’s dataset, on the other hand,
is created by dynamically mining apps, and captures view hi-
erarchies, screenshots, and user interactions [11].

Like the ERICA dataset, Rico is created by mining design
and interaction data from apps at runtime. Rico is four times
larger than the ERICA dataset, and presents a superset of its
design information. Rico also exposes an additional view of

each app’s design data: while ERICA provides a collection of
individual user interaction traces for an app, Rico additionally
provides a list of the unique UIs discovered by aggregating
over user interaction traces and merging UIs based on a sim-
ilarity measure. This representation is useful for training ma-
chine learning models over UIs that do not depend on the se-
quence in which they were seen. Lastly, Rico annotates each
UI with a low-dimensional vector representation that encodes
layout based on the distribution of text and images, which can
be used to cluster and retrieve similar UIs from different apps.

DATA-DRIVEN DESIGN APPLICATIONS
Rico was built to support a variety of data-driven applications
for mobile app design. The data and representations exposed
by Rico are motivated by five classes of design applications,
which have been studied in a number of domains (Figure 3).

Design Search
Designers use examples for inspiration and for understanding
the landscape of possible solutions. Existing design search
systems span domains including web design [32, 19], mobile
app flows [11], 3D modeling [17], interior design [7], fash-
ion [22], and programming [10]. These systems often support
keyword or query-by-example search, and return visual gal-
leries of results that can easily be reviewed by the designer.

To support keyword search over mobile app designs, Rico
exposes app-level metadata from the Google Play Store and
element-level metadata contained within the Android view
hierarchies. For each UI element, the view hierarchy ex-
poses the text contained within the element, as well as the
classname and resource-id properties specified by the
app creator. This textual data often provides semantic clues
about the element’s functionality (e.g., search icon, login but-
ton), which can serve as weak supervision to classify semantic
parts of mobile app design. Yi et al. leverage a similar form
of weak supervision — artists’ annotations contained in scene
graphs — to label semantic parts of 3D models [39]. Design-
ers can perform keyword searches over these functional se-
mantic classes to find relevant elements or screens in a user
interaction trace. To facilitate query-by-example search, Rico
exposes a vector representation for each UI that encodes lay-
out. Rico provides search engines with several visual repre-
sentations that can be served up as results: UI screenshots,
flows, and animations.

UI Layout Generation
Design datasets are also useful for training generative mod-
els of design. Prior work has learned generative models for
arranging design elements and defining their attributes in do-
mains such as graphic design [30] and 3D modeling [35].
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Figure 3: The five classes of design applications that Rico supports, correlated with the
parts of the dataset intended to support them.

Figure 4: Automated crawlers are often stymied
by UIs that require complex interaction sequences,
such as the three shown here.

Researchers can similarly use the Rico dataset to train prob-
abilistic generative models of UI layouts. The Android view
hierarchy exposes all the elements comprising a UI screen,
their attributes (e.g., position, dimensions), and the struc-
tural relationships between them. By combining screenshots
and view hierarchies, researchers can compute visual features
such as the color contrast between nested elements. Addi-
tionally, Play Store metadata can be leveraged to create spe-
cialized training sets. For example, app ratings and download
metrics can be used as proxies for design quality, so that mod-
els can be optimized to emulate “good” layouts. Similarly,
separate models can be trained for different app categories.

UI Code Generation
Once a mobile app is designed, implementing its interfaces
and interactions in code can be a time consuming process.
As a result, prior work has studied how different code com-
ponents are used to implement UIs in popular apps [33] and
developed models to automatically generate code from UI de-
signs [29].

Design systems can leverage Rico to reverse engineer UIs.
Since Rico’s view hierarchies specify the Android compo-
nents comprising a UI screen, a system could leverage a hi-
erarchy and screenshot to generate Android source code that
reproduces both the visual look and interactivity present in
the original UI.

User Interaction Modeling
A key component of a mobile app’s design is the interactivity
of its various UIs and elements [11]. Modeling how users in-
teract with different UIs can support better automated testing
for apps as well as app optimizations that pre-fetch data by
predicting a user’s next action.

Like the ERICA dataset, Rico contains user interaction data
captured while an app is being used. Each user trace for an
app contains every user interaction event annotated with its
type (such as “tap” or “scroll”) and the UI element that re-
ported it. By finding the same UI element in the correspond-
ing view hierarchy, models can learn from a richer set of fea-
tures based on the element’s properties and metadata. Instead
of predicting that a user will click on an element in the top-
right corner of the screen, models can predict that a user will
check out.

User Perception Prediction
Models of user perception help designers get early feedback
on their designs. Prior work has explored models for predict-
ing users’ first impressions of web pages [31, 18], mobile app
screens [25, 24], and mobile app icons [27]. Other research
has focused on predicting longer-term perception based on
animations [36], menus [21], and visual diversity and consis-
tency between different screens [37, 26].

To build perceptual models of mobile design using the Rico
dataset, systems can compute features over UI screenshots
and animations, and correlate them with Play Store metrics.
For example, researchers could examine correlations between
an app’s color palette and its average rating. In the future,
researchers could serve these screenshots and animations to
crowdsource additional perceptual annotations.

MINING APP DESIGNS
To create Rico, we developed a platform that mines design
data from Android apps at runtime by combining human-
powered and programmatic exploration. Humans rely on
prior knowledge and contextual information to effortlessly in-
teract with a diverse array of apps. Apps, however, can have
hundreds of UI states, and human exploration clusters around
common use cases, achieving low coverage over UI states for
many apps [6, 11]. Automated agents, on the other hand, can
be used to exhaustively process the interactive elements on a
UI screen [9, 34]; however, they can be stymied by UIs that
require complex interaction sequences or human inputs (Fig-
ure 4) [5].

This paper proposes a hybrid approach for design mining mo-
bile apps that combines the strengths of human-powered and
programmatic exploration: leveraging humans to unlock app
states that are hidden behind complex UIs, and using auto-
mated agents to exhaustively process the interactive elements
on the uncovered screens to discover new states. The au-
tomated agents leverage a novel content-agnostic similarity
heuristic to efficiently explore the UI state space. Together,
these approaches achieve higher coverage over an app’s UI
states than either technique alone.
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Figure 5: Our crowd worker web interface. On the left, crowd workers can interact with the app screen using their keyboard and mouse. On the
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Crowdsourced Exploration
The crowdsourced mining system uses a web-based architec-
ture similar to ERICA [11]. A crowd worker connects to the
design mining platform through a web application, which es-
tablishes a dedicated connection between the worker and a
phone in our mobile device farm. The system loads an app on
the phone, and starts continuously streaming images of the
phone’s screen to the worker’s browser. As the worker in-
teracts with the screen on his browser, these interactions are
sent back to the phone, which performs the interactions on
the app.

We extended the ERICA architecture to enable large-scale
crowdsourcing over the Internet. We added an authorization
system that supports both short- and long-term engagement
models. For micro-task style crowdsourcing on platforms like
Amazon Mechanical Turk, we generate URLs with tokens.
When a worker clicks on a URL with a valid token, the sys-
tem installs an app on a device and hands over control to the
user for a limited time. To facilitate longer term engagements
on platforms such as Upwork, we provide a separate interface
through which workers can repeatedly request apps and use
them. This interface is protected by a login wall, and each
worker is provided separate login credentials.

We show the web interface in Figure 5. To ensure that no
personally identifiable information is captured, the web in-
terface provides a name, email address, location, and phone
number for crowd workers to use in the app. It also displays
emails or text messages sent to the specified email addresses
and phone numbers, letting crowd workers complete app ver-
ification steps with minimal effort.

Automated Exploration
To move beyond the set of UI states uncovered by humans,
Rico employs an automated mining system. Existing auto-
mated crawlers hard-code inputs for each app to unlock states
hidden behind complex UIs [20, 5]. We achieve a similar re-
sult by leveraging the interaction data contained within the
collected user traces: when the crawler encounters a inter-
face requiring human input, it replays the interactions that a
crowd worker performed on that screen to advance to the next
UI state.

Similar to prior work [20, 5], the automated mining system
uses a depth-first search strategy to crawl the state space of
UIs in the app. For each unique UI, the crawler requests the
view hierarchy to identify the set of interactive elements. The
system programmatically interacts with these elements, cre-
ating an interaction graph that captures the unique UIs that
have been visited as nodes, and the connections between in-
teractive elements and their resultant screens as edges. This
data structure also maintains a queue of unexplored interac-
tions for each visited UI state. The system programmatically
crawls an app until it hits a specified time budget or has ex-
haustively explored all interactions contained within the dis-
covered UI states.

Content-Agnostic Similarity Heuristic
After Rico’s crawler interacts with a UI element, it must de-
termine whether the interaction led to a new UI state or one
that is already captured in the interaction graph. Database-
backed applications can have thousands of views that repre-
sent the same semantic concept and differ only in their con-
tent (Figure 6). Therefore, we employ a content-agnostic sim-
ilarity heuristic to compare UIs.
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Figure 6: Pairs of UI screens from apps that are visually distinct but
have the same design. Our content-agnostic similarity heuristic uses
structural properties to identify these sorts of design collisions.

This similarity heuristic compares two UIs based on their vi-
sual and structural composition. If the screenshots of two
given UIs differ by fewer than α pixels, they are treated as
equivalent states. Otherwise, the crawler compares the set of
element resource-ids present on each screen. If these
sets differ by more than β elements, the two screens are
treated as different states.

We evaluated the heuristic with different values of α and β on
1, 044 pairs of UIs from 12 apps. We found that α = 99.8%
and β = 1 produces a false positive rate of 6% and a false
negative rate of 3%. We use these parameter values for au-
tomated crawling, and computing the set of unique UIs for a
given app.

Coverage Benefits of Hybrid Exploration
To measure the coverage benefits our hybrid exploration ap-
proach, we compare Rico’s crawling strategy to human and
automated exploration alone. We selected 10 apps (Figure 7)
from the top 200 on the Google Play Store. Each app had
an average rating higher than 4 stars (out of 5) and had been
downloaded more than a million times. We recruited 5 partic-
ipants for each app, and instructed them to use the app until
they believed they had discovered all its features. We then
ran the automated explorer on each app for three hours, after
warming it up with the collected human traces.

Prior work [1, 6, 11] measured coverage using Android ac-
tivities, a way of organizing an Android app’s codebase that
can comprise multiple UI screens. While activities are a use-
ful way of statically analyzing an Android app, developers do
not use them consistently: in practice, complex apps can have
the same number of activities as simple apps. In contrast, we
use a coverage measure that correlates with app complexity:
computing coverage as the number of unique UIs discovered
under the similarity heuristic.

Figure 8 presents the coverage benefits of a hybrid system:
combining human and automated exploration increases UI
coverage by an average of 40% over human exploration alone,
and discovered several new Android activities for each app.
For example, on the Etsy app, our hybrid system uncovered
screens from 7 additional Activities beyond the 18 discovered
by human exploration.

Name Description
Polyvore Fashion social-network and marketplace
Fabulous Goal-setting app 
Issuu Magazine browsing and collection 
Foursquare City guide and reviews
Yelp Guide for local businesses
Newsrepublic World news digest
Etsy Homemade and Vintage goods marketplace
Todoist To-do list and reminder
WeHeartIt Photo-sharing social network
Weather Channel Weather tracker
Evernote Note-taking app for collaboration

Figure 7: The Android apps used in our evaluation. Each had a rating
higher than 4 stars (out of 5) and more than 1M downloads on the
Google Play store.

Figure 8: The performance of our hybrid exploration system com-
pared to human and automated exploration alone, measured across
ten diverse Android apps.

We also evaluated the coverage of the automated system in
isolation, without bootstrapping it with a human trace. The
automated system achieved 26% lower coverage across the
tested apps than Rico’s hybrid approach. This poor perfor-
mance is largely attributable to the gated experiences that
pure, automated approaches cannot handle. For instance,
Todoist and WeHeartIt hide most of their features behind a
login wall.

THE RICO DATASET

The Rico dataset comprises 10, 811 user interaction traces
and 72, 219 unique UIs from 9, 772 Android apps spanning 27
categories (Figure 9). We excluded from our crawl categories
that primarily involve multimedia (such as video players and
photo editors) as well productivity and personalization apps.
Apps in the Rico dataset have an average rating of 4.1 stars,
and data pertaining to 26 user interactions.
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Figure 9: Summary statistics of the Rico Dataset: app distribution by (a) category, (b) average rating, and (c) number of mined interactions. (d)
The distribution of mined UIs by number of interactive elements.

Data Collection
To create Rico, we downloaded 9, 772 free apps from the
Google Play Store, and crowdsourced user traces for each app
by recruiting 13 workers (10 from the US, 3 from the Philip-
pines) on UpWork. We chose UpWork over other crowd-
sourcing platforms because it allows managers to directly
communicate with workers: a capability that we used to re-
solve any technical issues that arose during crawling. We in-
structed workers to use each app as it was intended based on
its Play Store description for no longer than 10 minutes.

In total, workers spent 2, 450 hours using apps on the platform
over five months, producing 10, 811 user interaction traces.
We paid US $19, 200 in compensation, or approximately two
dollars to crowdsource usage data for each app. To ensure
high quality traces, we visually inspected a subset of each
user’s submissions. After collecting each user trace for an
app, we ran the automated crawler on it for one hour.

Design Data Organization
For each app, Rico exposes Google Play Store metadata, a set
of user interaction traces, and a list of all the unique, discov-
ered UIs through crowdsourced and automated exploration
(Figure 10). The Play Store metadata includes an app’s cate-
gory, average rating, number of ratings, and number of down-
loads. Each user trace is composed of a sequence of UIs and
user interactions that connect them. Each UI comprises a
screenshot, an augmented view hierarchy, a set of explored
user interactions, a set of animations capturing transition ef-
fects in response to user interaction, and a learned vector rep-
resentation of the UI’s layout.

View hierarchies capture all of the elements comprising a UI,
their properties, and relationships between them. For each el-
ement, Rico exposes its visual properties such as screen posi-
tion, dimensionality, and visibility, textual properties such as
class name, id, and displayed text, structural properties such
as a list of its children in the hierarchy, and interactive proper-

Figure 10: The Rico dataset contains Google Play Store metadata, a
set of user interaction traces, and a list of all the unique UIs discovered
during crawling.

ties such as the ways a user can interact with it. Additionally,
we annotate elements with any Android superclasses that they
are derived from (e.g., TextView), which can help third-
party applications reason about element types. Rico contains
more than 3M elements, of which approximately 500k are
interactive. On average, each UI comprises eight interactive
elements.
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Training a UI Layout Embedding
Since the Rico dataset is large and comprehensive enough to
support deep learning applications, we trained an autoencoder
to learn an embedding for UI layouts, and used it to anno-
tate each UI with a 64-dimensional vector representation en-
coding visual layout. This vector representation can be used
to compute structurally — and often semantically — similar
UIs, supporting example-based search over the dataset (Fig-
ure 12).

An autoencoder is a neural network that involves two mod-
els — an encoder and a decoder — to support the unsuper-
vised learning of lower-dimensional representations [8]. The
encoder maps its input to a lower-dimensional vector, while
the decoder maps this lower-dimensional vector back to the
input’s dimensions. Both models are trained together with
a loss function based on the differences between inputs and
their reconstructions. Once an autoencoder is trained, the en-
coder portion is used to produce lower-dimensional represen-
tations of the input vectors.

To create training inputs for the autoencoder that embed lay-
out information, we constructed a new image for each UI en-
coding the bounding box regions of all leaf elements in its
view hierarchy, differentiating between text and non-text ele-
ments (Figure 11). Rico’s view hierarchies obviate the need
for noisy image processing or OCR techniques to create these
inputs. In the future, if we can predict functional semantic la-
bels for elements such as search icon or login button, we can
train embeddings with even richer semantics.

The encoder has an input dimension of 11, 200, an output
dimension of 64, and uses two hidden layers of dimension
2, 048 and 256 with ReLU non-linearities [28]. The decoder
has the reverse architecture. We trained the autoencoder with
90% of our data and used the rest as a validation set, and
found that the validation loss stabilized after 900 epochs or
approximately 5 hours on a Nvidia GTX 1060 GPU. Once
the autoencoder was trained, we used the encoder compute a
64-dimensional representation for each UI, which we expose
as part of the Rico dataset.

Figure 12 shows several example query UIs and their near-
est neighbors in the learned 64-dimensional space. The re-
sults demonstrate that the learned model is able to capture
common mobile and Android UI patterns such as lists, login
screens, dialog screens, and image grids. Moreover, the di-
versity of the dataset allows the model to distinguish between
layout nuances, like lists composed of smaller and larger im-
age thumbnails.

FUTURE WORK
The are a number of opportunities to extend and improve the
Rico dataset. New models could be trained to annotate Rico’s
design components with richer labels, like classifiers that de-
scribe the semantic function of elements and screens (e.g.,
search, login). Similarly, researchers could crowdsource ad-
ditional perceptual annotations (e.g., first impressions) over
design components such as screenshots and animations, and
use them to train newer types of perception-based predictive
models.

Unlike static research datasets such as ImageNet [12], Rico
will become outdated over time if new apps are not continu-
ally crawled and their entries updated in the database. There-
fore, another important avenue for future work is to explore
ways to make app mining more sustainable. One potential
path to sustainability is to create a platform where designers
can use apps and contribute their traces to the repository for
the entire community’s benefit.

To download the Rico dataset — or learn more about the
project — visit http://interactionmining.org/rico.
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