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ABSTRACT
Sorting items by user rating is a fundamental interaction
pattern of the modern Web, used to rank products (Ama-
zon), posts (Reddit), businesses (Yelp), movies (YouTube),
and more. To implement this pattern, designers must take in
a distribution of ratings for each item and define a sensible
total ordering over them. This is a challenging problem, since
each distribution is drawn from a distinct sample popula-
tion, rendering the most straightforward method of sorting
— comparing averages — unreliable when the samples are
small or of different sizes.
Several statistical orderings for binary ratings have been

proposed in the literature (e.g., based on the Wilson score,
or Laplace smoothing), each attempting to account for the
uncertainty introduced by sampling. In this paper, we study
this uncertainty through the lens of human perception, and
ask “How do people sort by ratings?” In an online study,
we collected 48,000 item-ranking pairs from 4,000 crowd
workers along with 4,800 rationales, and analyzed the results
to understand how users make decisions when comparing
rated items. Our results shed light on the cognitive models
users employ to choose between rating distributions, which
sorts of comparisons are most contentious, and how the
presentation of rating information affects users’ preferences.
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A
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!40%!(4)!

10 votes

B

!44%!(53)!

!56%!(67)

120 votes

Which one would you choose?

Figure 1: This paper studies how people choose between alterna-
tives in a binary thumbs-up/thumbs-down rating system.

1 INTRODUCTION
User ratings are ubiquitous across the modern Web. Social
and e-commerce platforms crowdsource ratings of content,
products, and services at scale, and use these ratings to drive
rankings [11], collaborative filtering [19], and recommender
systems [17].

The design of user rating systems has been studied in the
literature. Sparling et al. [22] compare strategies for present-
ing rating information, andmeasure how presentation affects
rating distributions, inter-rater reliability, and time-to-rate.
Other researchers have studied the effect of prior ratings on
users’ own decision making [1], modeled the noise that re-
sults from erroneous or careless ratings [15], built economic
models of user incentives and behavior in rating systems [2],
and even used machine learning to predict ratings from con-
tent [21].
One of the most common uses of ratings on the Web is

to sort a collection of items in user-preference order, for
instance to return an ordered list of the highest-rated restau-
rants or movies in response to a search query. The central
challenge of this problem is taking in a distribution of rat-
ings for each item and defining a sensible total ordering over
them. This simple problem formulation belies its complexity,
since in real-world applications both the distribution of rat-
ings and the sample over which that distribution is defined
may vary.
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The most natural way to compare distributions — by av-
erage — is problematic when the sample populations are
not both large and of approximately equal size. When the
samples are small, the sample average is sensitive to each
individual rating and therefore an unreliable predictor of the
true population average.When the samples sizes are unequal,
quantifying and comparing their relative uncertainties can
be problematic.

For the case of binary thumbs-up / thumbs-down ratings,
this uncertainty can be estimated mathematically, for in-
stance via Wilson confidence intervals [25], Laplace smooth-
ing [27], or Bayesian formulations [13]. In this paper, we
study this uncertainty through the lens of human perception,
and ask, “How do people sort by ratings?” In particular, we
seek to understand the cognitive strategies users employ to
choose the more preferable item when presented with two
different thumbs-up / thumbs-down distributions [7].
To answer this question, we conducted an online study

of 4,000 crowd workers (Figure 1). We partitioned the space
of ratings into four representative comparison classes, and
collected 48,000 rating-pair preferences over them alongwith
4,800 rationales justifying users’ choices. Patterned off real-
world interfaces, we tested three different presentational
formats for ratings distributions to better understand how
users make decisions when presented with incomplete rating
information.
From this data, we determine which kinds of choices are

most contentious and time consuming for users, compare
users’ actual preferences to the predictions made by popu-
lar statistical sorting methods, and offer some hypotheses
about the cognitive models users employ to make sorting
decisions. Our results have implications for the future design
and implementation of rating systems.

2 RATINGS & RANKINGS
Rankings based on user ratings abound on the Web. Figure 2
shows examples from several highly-trafficked websites em-
ploying two of the most popular rating schemes: binary
thumbs-up / thumbs-down, and five-star. In this paper we
focus on understanding binary ratings, which are easier to
reason about since they can be parameterized by only two
variables: the number of up-votes nu and number of down-
votes nd .

To rank such distributions, a number of simple formulae
have been proposed, such as the positive difference p̄ = nu −

nd , and the positive proportion p̂ = nu/(nu + nd ) (or average
rating). The positive difference is not widely used, since it
can counterintuitively produce rankings that favor items
with a lower percentage of positive votes. The average rating
provides a useful summary of the sample distribution, but
can be challenging to compare, since proportions elide the
size of the population over which they were computed and

Figure 2: Examples of ratings-driven rankings across the Web:
Reddit (posts), YouTube (videos), Rotten Tomatoes (movies), Ama-
zon (products), Yelp (businesses), and TripAdvisor (hotels). The top
three sites use the binary thumbs-up / thumbs-down ratings we
study in this paper; the bottom three employ a five-star system.

there are an infinite number of distributions possessing the
same average.
The size of the sample population is material in these

comparisons because it is correlated with the uncertainty
surrounding the calculated average. When the population is
small, the average is sensitive to small changes in the sam-
ple. As the population grows large, changing data points fail
to move the average much. Difficulty arises when compar-
ing averages between sample populations of differing size:
in the example shown in Figure 1, just four additional A
downvotes would flip the relative ordering from 60% > 44%
to 42.8% < 44%. Four additional B downvotes, in contrast,
would change B’s positive proportion by little more than one
percent. Which, then, is really the “better” choice?
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To combat this problem, Miller [12] recommends the Wil-
son score [25] — or more precisely the lower bound of the
Wilson confidence interval for a Bernoulli parameter — as
the sorting function

sw =
1

1 + 1
nz

2

[
p̂ +

1
2n

z2 − z
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n
p̂ (1 − p̂) +

1
4n2 z

2
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where n = nu +nd is the total number of ratings and z is the
(1 − a/2)-quantile of the standard normal distribution. Like
other binomial proportion confidence intervals, the Wilson
score provides a lower bound on how far the true population
average may lie from the sample average, given some fixed
confidence level. As the size of the sample grows, the sam-
pling error shrinks, and the confidence interval converges
to the positive proportion from above and below.
Schumacher [20] and Zhang et al. [27] advocate using a

different correction to the sample average for ranking via
Laplace smoothing, which assumes that every item has a
single thumbs-up and thumbs-down rating by default sℓ =
(nu + 1) /(nd + nu + 2). In a Bayesian sense, this shrinkage
estimator for the positive proportion is equivalent to com-
puting the expected value of the posterior average, given the
observed ratings and using a beta distributionwithα = β = 1
as the prior.

3 RELATEDWORK
The design of user rating systems has been studied in the
literature, particularly in the context of online recommenda-
tion and reputation systems.

Recommendation engines leverage techniques like collabo-
rative filtering to predict personalized preferences from large
collections of user interaction data [19]. Noise in this data
affects the quality of recommendations, creating an upper
bound on prediction accuracy referred to as the “magic bar-
rier” [3]. Researchers characterize this noise as natural when
it arises from human error or carelessness, and malicious
when it results from deliberate attacks on the system [15].
Researchers have measured natural noise by examining how
consistently users re-rate items [1, 4], demonstrating that re-
moving data contributed by inconsistent users can improve
the overall magic barrier of a recommendation system [18].
Sparse rating data also poses challenges for recommendation
systems: researchers have built economic models of user
incentives and behaviors [2], and compared techniques for
learning about new users [17].
The choice of rating scale can affect both the quality

and quantity of rating data. While finer-grained scales in-
crease time-to-rate, users often prefer them to coarser alter-
natives, suggesting that increased granularity may reduce

noise [1, 22]. Finer-grained scales, however, do not neces-
sarily produce a more discriminative signal. Product rat-
ings collected under a five-star scale often follow a J-shaped
distribution, due to purchasing and under-reporting biases:
products mostly receive four- and five-stars, some one-star
reviews, and almost no scores in the middle [6]. Accord-
ingly, companies like YouTube and Netflix have switched
from five-star to binary ratings, and reported significant in-
creases in rating frequency as a result [11]. Kluver et al. [9]
developed a information-theoretic framework to model this
quality-quantity tradeoff.
With the boom of the sharing economy, platforms like

Uber and Airbnb critically rely on users’ reviews, building
reputation systems to promote trust between strangers. Re-
cent work has studied how information presented on user
profiles in such systems can affect perceptions of trust and
service quality. Thebault-Spieker et al. found that race- and
gender-based profile information did not bias how Mechani-
cal Turk participants rated simulated gig work [23]. Qiu et
al. [16] measured how the perception of trust on Airbnb is
affected by both the average star rating of a profile and its
number of reviews. When presented with a set of profiles
that were sufficiently differentiated along these two axes,
users placed more trust in an account with roughly ten times
more reviews than one with a 1-point higher average rating.

4 STUDY OVERVIEW
To understand how people sort by ratings, we conducted two
experiments, showing users pairs of ratings distributions
and asking them to select the most preferable one. In both
experiments, distributions are presented without reference
to a particular domain, and denoted by the letters A and B.

In the first experiment, we aim to understand the cognitive
models users employ to make rankings decisions, and iden-
tify themost contentious types of comparisons, where people
disagree about which distribution is preferable. We partition
the comparison space into four categories, sample a set of
representative questions from each one, and then measure
inter-rater reliability and time-to-rate over a set of crowd
workers recruited for task. To understand the cognitive mod-
els workers employ to determine their preferences, we collect
text rationales for a subset of the comparisons. To reduce
the cognitive burden on workers and minimize their men-
tal calculations, we present each distribution fully-specified
with the number of up- and down-votes, the positive and
negative proportions, and the total number of votes.

In the second experiment, we explore the way users’ pref-
erences are influenced by changes in the presentation of
rating information. Here, we restrict our investigation to
the most contentious category of comparisons from the first
experiment, and vary the information architecture of the
distribution presentations to mimic popular online sites.
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Figure 3: The four categories of ratings comparisons we explore in Experiment One.

Sample Space
To conduct these experiments, we must bound and sample
the space of possible comparisons to generate tasks for work-
ers. We can uniquely parameterize each ratings distribution
by its positive proportion p̂ ∈ [0, 1] and total number of votes
n ∈ (1,∞). Generating a comparison between distributions
then requires sampling a 4-tuple (p̂1,n1, p̂2,n2).
To generate a set of informative tasks, we partition the

space of comparisons into four semantic categories (Figure 3):
Category One comprises comparisons where both distri-

butions have the same number of total votes (n1 = n2), but
the positive proportion varies between them.

Category Two comprises comparisons where both distri-
butions have the same positive proportion (p̂1 = p̂2), but the
number of total votes varies between them.

Category Three comprises comparisons where one dis-
tribution has both a higher positive proportion (p̂1 > p̂2) and
a higher number of total votes (n1 > n2).

Category Four comprises comparisons where one distri-
bution has a higher positive proportion (p̂1 > p̂2) but a lower
number of total votes (n1 < n2).

To make sampling tractable, we restrict our investigations
to distributions with fewer than 10,000 ratings. To ensure
adequate coverage over the space of possible comparisons —
and generate enough rankings per comparison to observe
trends and patterns — we employ a stratified sampling.
First, we linearly partition the range of possible positive

proportions into four equal subsets ([0-0.25], [0.25–0.50],
[0.50–0.75], and [0.75–1]) and logarithmically partition the
range of total ratings ([0–10], [11–100], [101–1,000], and
[1,001–10,000]), generating a 4 × 4 division of the space of
possible ratings distributions. Taking the Cartesian product
of this division set with itself yields a 16× 16 partition of the
space of possible distribution comparisons.

To generate ranking tasks for a given category, we sample
one 4-tuple from each of the 256 partitions of this compari-
son set, subject to the constraints of the category. Since some
partitions do not contain any conforming comparisons for
a given category, we omit them from sampling, yielding 40
ranking tasks each for Categories One & Two and 100 for
Categories Three & Four. Note that, with the exception of
Category One, the logarithmic partitioning of total votes bi-
ases the generated comparisons towards order-of-magnitude
differences in sample size, which allows us to explore how
users navigate large variations in uncertainty.

5 EXPERIMENT ONE
To identify contentious comparisons, we recruited a set of
online crowd workers through Amazon Mechanical Turk
and assigned each one a task containing 14 distribution pairs.
Each comparison presented two item cards with labels, a
complete description of each ratings distribution, and the
query “Which item would you choose?” (Figure 1).
Workers were asked to provide a text rationale for three

random comparisons in each task. Once the task was com-
plete, we requested that each participant indicate whether
they had any particular domain (e.g., movies, products, restau-
rants) in mind while making their selections.

Study Design & Procedure
Our first experiment comprised 2,000 unique tasks, each
consisting of one practice comparison, three “sanity-test”
comparisons (used for worker validation), two comparisons
each from Categories One and Two, and five comparisons
each from Categories Three and Four.

The practice comparison — which was fixed across tasks —
was intended to introduce the worker to the task and provide
examples of acceptable rationales. To prevent malicious or in-
competent workers from skewing the collected statistics, we
selected three “sanity-test” comparisons from Category One,
where both distributions were sampled from large popula-
tions and the positive proportion for one clearly dominated
the other. Workers who selected the item with lower aver-
age rating were asked to redo the task more carefully upon
completion. The remaining 14 comparisons were randomly
assigned to workers from their respective categories, and
presented in random order during the task.

Measures
To measure contention for each comparison, we compute
the inter-rater reliability I = |nA − nB | /n: the absolute value
of the difference between the number of participants who
selected item A and the number of participants who selected
item B, expressed as a percentage of the total number of
respondents. Inter-rater reliability values range from 0% —
when participants are equally split between the two choices —
to 100% — when the participants are in complete agreement.
We also measure the time-to-rank T each comparison

across users, starting from the time the distributions appear
and ending when a choice is selected. Since this time data
may be noisy (as workers become distracted or leave their
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computer mid-task), we track the average time per question
on a per-user basis, and exclude times that are more than
two standard deviations beyond the worker’s mean from our
calculations.
We also measure the time-to-rank T each comparison

across users, starting from the time the distributions appear
and ending when a choice is selected. Since this time data
may be noisy (as workers become distracted or leave their
computer mid-task), we track the average time per question
on a per-user basis, and exclude times that are more than
two standard deviations beyond the worker’s mean from our
calculations.

Participants
We recruited 2,000 uniqueMechanical Turk workers from the
US, Canada, the UK, and Australia. Each worker was limited
to a single task, and paid $0.17 upon successful completion.
After the completion of the study, we paid each worked
a retrospective bonus of $0.40 in order to ensure workers
earned at least minimum wage for their time.

Results & Discussion
We collected 28,000 selections for 280 unique comparisons
with 2,800 rationales from 2,000 unique workers. The average
completion time per task was 4 minutes and 33 seconds.
Of the 2,000 participants, 42 (2.1%) failed at least one of
the sanity-test comparisons and were asked to repeat the
experiment, which all workers did successfully.
We conducted an iterative open coding of the collected

rationales to identify some themes behind workers’ decisions.
Each rationale was independently coded by three members
of the research team: rationales without consensus code were
discussed until consensus was reached.
In Category One, we observe that people generally pre-

fer the option with higher up-vote percentage when both
distributions are sampled from the same size population, se-
lecting it 98.05% of time. This was the least contentious of
the four categories, with an average inter-rater reliability of
96.2% across comparisons (Figure 4). Workers spent an av-
erage of 5.7 seconds per comparison (min = 4.4, max = 7.7,
s = 0.9). Most rationales (59.5%) indicate that workers made
their selections by comparing percentages, with a substan-
tial minority (30%) indicating that they compared absolute
up-votes. Since the population sizes in Category One are
equal within a comparison, these two strategies are func-
tionally equivalent and statistically sound: for a fixed sample
size, the distribution with higher positive proportion is more
likely to converge to a higher average rating as the sample
populations increase.

99

92

99

93

90

Figure 4: The Category One contention heatmap. Each cell is
color-coded based on its inter-rater reliability score: the higher the
agreement, the lighter the color. The number next to each block
represents the average agreement value of each quartile block.
Certain comparisons from this category were used as sanity-tests
in our experimental framework and are marked accordingly.

38

71

81

Figure 5: The Category Two contention heatmap. Each cell is
color-coded based on its inter-rater reliability score: the higher the
agreement, the lighter the color. The number next to each block
represents the average agreement value of each quartile block.
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Figure 6: The Category Three contention heatmap. Each cell is
color-coded based on its inter-rater reliability score: the higher the
agreement, the lighter the color. The number next to each block
represents the average agreement value of each quartile block.
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Figure 7: Aggregated time heatmaps for Category Two (left) and
Category Three (right), labeled with the average time-to-rate in
seconds. For these categories, there is a positive correlation between
contention and time-to-rank.

In Category Two, we observe that people prefer the option
with higher number of total votes 85.2% of the time when
both distributions have the same up-vote percentage, an-
other statistically-sound preference. Contention within this
category was also low (Figure 5), with an average I =70.5%.
Users report total votes (71.1%) as their primary selection
critera, and workers spent an average of 6.8 seconds per
comparison (min = 4.9, max = 9.5, s = 1.1)

In Category Three, we see that people prefer the option
with higher number of total votes and higher up-vote per-
centage 96.2% of the time, when one distribution strictly
dominates the other on both axes (Figure 6). This, again,
is the statistically consistent choice. In this category, con-
tention was low (average I =92.5%) and rationales were split,
with 35% reporting up-vote percentage, 14.8% reporting total
votes, and 25.1% reporting both factors were responsible for
their preferences. This bifurcation of rationales is unsurpris-
ing, given that the category involved two varying quantities
instead of one. Workers spent an average of 5.8 seconds per
comparison (min = 3.4, max = 8.7, s = 1.1).
In all three categories, we observe more contention for

comparisons where the positive proportion of both items
is less than 50%, with an increase in I of 7.1% in Category
One, 32% in Category Two, and 13.9% in Category Three.
In this region of the comparison space, users are somewhat
more likely to choose the item that the evidence suggests
is less likely to be higher-rated, although the effect is most
pronounced in Category Two. This increase in contention
is correlated with an increase in time-to-rank (Figure 7),
suggesting that users struggle more with these decisions.
There are a number of possible explanations for this be-

havior. One is through the lens of Tversky and Kahneman’s
theory of risk aversion [8]. When selecting between the bet-
ter of two promising options, people may implicitly avoid
risk to minimize their expected loss: when both options have
high ratings, selecting the lower-rated one may feel like
“losing the difference” between the averages. On the other
hand, when both options seem undesirable, people may ac-
tively seek out risk to maximize the potential gain: a choice
that seems less reliably bad may be preferable to one with a
slightly higher average rating.
This explanation is supported by participant rationales.

When the positive proportion of both items is less than 50%,
we see that 9% of rationales base their decisions on either
how reliable an item’s rating is (e.g., “It has been used more, so
reviews are more reliable”, “This is a much larger sample size
for A and I feel like it’s more reliable than B with only a few
votes”), or on how much potential the item has in the future.
This latter property is particularly evident when users select
items that have very small numbers of votes (e.g., “Better
chance to improve and increase up percentage”, “it has 91 votes
and it could go up, whereas A is pretty clearly not great.”).
In Category Two, where this preference reversal is most

profound, another possible explanation is that the number of
total votesmay bewhatHsee et al. call a “difficult-to-evaluate”
attribute in the context of their evaluability hypothesis [5].
While people are societally conditioned to compare percent-
ages (e.g., grades in a class) and counts (e.g., home runs bat-
ted in a year), understanding the ramifications of population
size (the denominator in the positive proportion calculation)
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Figure 8: The Category Four contention heatmap. Each cell is
color-coded based on its inter-rater reliability score: the higher the
agreement, the lighter the color. The number next to each block
represents the average agreement value of each quartile block.

likely requires more cognitive effort. Under Hsee’s hypothe-
sis, such attributes have less influence in decision making.

Category Four — where one distribution has a higher pos-
itive proportion but a lower number of total votes — is the
most contentious, with average I =55.1% (Figure 8). In these
comparisons, users regularly disagree about how to weigh
the relative uncertainty between distributions.

While users generally prefer the distribution with higher
positive proportion (Figure 9, left), most contention occurs
in two regions: when the difference in total votes is high, or
when the positive proportions are close. When one distribu-
tion has many more total votes but a much lower positive
proportion, users are unable to agree whether a “reliable”
lower rating is better or worse than an “unreliable” higher
one. When the positive proportions are close, users disagree
on how to account for differing population sizes in their
preferences.
In aggregate, however, users’ preferences in this cate-

gory are still statistically sound, being reliably predicted
by Laplace smoothing (75.2%) (Figure 9, right) and the Wil-
son score (75.0% at a 90% confidence estimate). Workers
spent an average of 6.5 seconds per comparison (min = 4.6,
max = 9.0, s = 1.0), and the collected rationales for Category
Four indicate that up-vote percentage (62.5%), the number
of total votes (17.9%), and the absolute number of up-votes
(6.2%) all play a role in decision-making.

Figure 9: In Category Four, a visualization of where users’ aggre-
gate preferences agree with positive proportion or higher total
votes (left), and the Laplace smoothing ranking (right).

6 EXPERIMENT TWO
In order to better understand how the presentation of rating
information affects users’ preferences, we ran a second ex-
periment on the most contentious comparison category, Cat-
egory Four. In this experiment, we presented workers with
the same distribution comparisons selected in Experiment
One, but in two new presentational formats: one showing
positive proportion and the number of total votes, and the
second showing the absolute number of up- and down-votes
(Figure 10).

We chose these particular ratings representations for two
reasons. First, they are two of the most widely-used presen-
tational formats for ratings distributions on the Web, mirror-
ing sites like Rotten Tomatoes, YouTube, Amazon, and Yelp.
Second, although both formats uniquely specify a binary
distribution, they make some potentially useful information
that was explicitly presented in Experiment One — the num-
ber of up- and down-votes in the first case, and the positive
and negative proportions in the second — inaccessible with-
out mental calculation. This allows us to explore whether
users invoke Kahneman’s System 2 [7] to make ratings com-
parisons, or merely rely on the information that’s readily
available.

A

!90%!

2,000 votes

A

!1,800

!200

Figure 10: The two representations used in Experiment Two: (left)
positive proportion and total votes, (right) up-votes and down-
votes.
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Study Design & Procedure
We collected 20,000 answers to 200 unique distribution com-
parisons with a total of 2,000 rationales from 2,000 unique
participants, each of whom was paid $0.14 upon successful
completion of the task and a $0.40 bonus upon completion
of the study. Each task comprised 13 comparisons, and the
average completion time per task was 4 minutes and 6 sec-
onds. Out of the 2,000 participants, 54 (2.7%) failed at least
one of the sanity-test comparisons and were asked to repeat
the experiment, which all workers did successfully. Once
again, we conducted an iterative open coding of the collected
rationales.

Results & Discussion
Changing ratings representations changes users’ preferences
(Figures 11 & 12). We use a two-proportion z-test to de-
termine which rankings are altered between presentation
conditions, and observe that 11% of comparisons are sig-
nificantly different between the complete information and
positive proportion conditions, 44% are significantly different
between the complete information and up- and down-votes
conditions, and 51% are significantly different between the
positive proportion and up- and down-votes conditions (at
the p < 0.05 significance level). Like Kahneman and Tver-
sky’s [24]work on the impact of question framing in decision
making, here we observe the importance of representation
and design in building user-rating ranking systems.
Figure 13 compares inter-rater reliability, average time-

to-rate, and agreement with the Laplace smoothing esti-
mate across all three presentational conditions. Observe
that, while users take the least time to make decisions in
the positive-proportion/total-votes condition (x̄=4.8 seconds,
min = 3.5, max = 7.0, s = 0.7) they exhibit the highest con-
tention (I =49.2%) and the lowest agreement with Laplace
smoothing (72.4%) and the Wilson Score (73.0%), which are
robust statistical estimates of the distribution most likely to
converge to the highest average rating. Given that the pre-
sentation emphasizes positive proportion, it is unsurprising
that it is the predominant rationale (57.2%).
In the up- and down-vote condition, users take slightly

longer to rank (x̄=5.2 seconds, min = 3.4, max = 8.2, s =
1.1)), but with much lower contention (I=68.2%) and higher
agreement with Laplace smoothing (82.9%) and the Wil-
son score (76.3%). Although the up-vote percentage is not
displayed, it remains the most frequently reported ratio-
nale (47%).
One possible explanation for these results is that, when

presented with a convenient proxy for decision making —
and little additional information (as in the positive-proportion/
total-votes condition) — users are content to rely on quicker
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Figure 11: The contention heatmap for the up- and down-vote ex-
periment. Each cell is color-coded based on its inter-rater reliability
score: the higher the agreement, the lighter the color. The number
next to each block represents the average agreement value of each
quartile block.
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Figure 12: The contention heatmap for the positive-
proportion/total votes experiment. Each cell is color-coded
based on its inter-rater reliability score: the higher the agreement,
the lighter the color. The number next to each block represents the
average agreement value of each quartile block.
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Figure 13: Laplace smoothing agreement, average inter-rater relia-
bility, and average time-to-rate for each of the three presentational
conditions of Category Four.

System 1 heuristics for making decisions.When complete dis-
tribution information is available, users may be confounded
by the number of variables and fall prey to overthinking [26],
resulting in worse decisions in an aggregate statistical sense.
When just the right amount of information is given — for
instance, enough to suggest that a percentage should be com-
puted — System 2 is triggered and users make the soundest
judgments.

7 DISCUSSION & FUTUREWORK
This paper demonstrates that, when people sort by ratings, in
aggregate they make sensible judgments that are statistically
sound. When the statistical uncertainty of the distributions
being compared is low, users reliably choose the option with
the most statistical support. When the positive proportions
of both items are less than 50% — or when the difference in
total votes is high — the comparisons are more contentious
and require more cognitive effort.
These results are consistent with the findings of Qiu et

al. [16], who examine Airbnb profiles with four- or five-star
average ratings and compare profiles with low (1 to 3) and
high (10 to 50) review counts. If we treat average star ratings
as positive proportions, we can map their experiments to one
sector of our experimental state space. The majority of par-
ticipants in our study also prefer the rating with higher total
votes, when one rating has a positive proportion of about
0.8 and between 10 and 50 votes, and the other rating has a
positive proportion of 1.0 and fewer than 4 votes (Figure 9).
This choice, however, is somewhat contentious.

We hypothesize that some of this contention can be as-
cribed to variations in users’ risk models, which may lead to
decisions that seem less statistically sound. Users may prefer
less “reliable” choices when they feel there is more to gain
and less to lose. In the future, incorporating these preferences
may improve the performance of Learning to Rank models
and personalized recommendation systems [10]: knowing
what users most value can help predict how they will choose
between products and services in contentious situations. Un-
derstanding whether these risk models are more situational

or more personal is one interesting avenue for future work.
Like prior work on quantifying natural noise in rating sys-
tems [1, 4], researchers couldmeasure how consistently users
adhere to a risk model by asking them to answer the same
set of questions multiple times.
For designers implementing ratings systems online, we

make two suggestions. First, in the absence of more sophisti-
cated models, we agree with Schumacher [20] and advocate
for the use of Laplace smoothing for ranking. It is a principled,
Bayesian estimator; simple to implement; computationally
efficient; and, we demonstrate, a reliable predictor of human
judgment. Second, since users’ preferences are dependent
on the presentation of ratings information, we suggest that
binary ratings be displayed in up-vote/down-vote format,
which minimizes contention and encourages users to make
sound judgments.

Future work should also examine whether these findings
hold when users express preferences in particular domains.
In our post-task surveys, 56.6% of participants reported hav-
ing a specific domain in mind, such as products (35.9%)
or movies (10.8%). It seems likely that users may employ
domain-specific risk models, for instance expressing more
conservative preferences when buying electronics thanwhen
choosing a restaurant for dinner. Similarly, temporal infor-
mation may play a role in the way people incorporate popu-
lation size into their judgments: it may seemmore acceptable
for a newly-opened coffee shop to have a small number of
ratings than a book that was released two years ago.
Finally, this paper examines binary ratings distributions.

Future work should consider other popular formats, such
as the five-star systems employed by Amazon and Yelp. We
suspect, however, that this will not be an easy task, since
meaningfully sampling these higher-dimensional spaces will
require generating orders-of-magnitude more comparisons,
and developing statistical uncertainty models to compare
them against will necessitatemore complexmathematics [14].
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