
ZIPT: Zero-Integration Performance Testing
of Mobile App Designs

Biplab Deka1 Zifeng Huang1 Chad Franzen1 Jeffrey Nichols2 Yang Li2 Ranjitha Kumar1

1University of Illinois at Urbana-Champaign 2Google Inc.
{deka2,zhuang45,cdfranz2,ranjitha}@illinois.edu,jwnichols@google.com,yangli@acm.org

ABSTRACT
To evaluate the performance of mobile app designs, design-
ers and researchers employ techniques such as A/B, usability,
and analytics-driven testing. While these are all useful strate-
gies for evaluating known designs, comparing many divergent
solutions to identify the most performant remains a costly
and difficult problem. This paper introduces a design per-
formance testing approach that leverages existing app imple-
mentations and crowd workers to enable comparative testing
at scale. This approach is manifest in ZIPT, a zero-integration
performance testing platform that allows designers to collect
detailed design and interaction data over any Android app —
including apps they do not own and did not build. Design-
ers can deploy scripted tests via ZIPT to collect aggregate
user performance metrics (e.g., completion rate, time on task)
and qualitative feedback over third-party apps. Through case
studies, we demonstrate that designers can use ZIPT’s aggre-
gate data and visualizations to understand the relative perfor-
mance of interaction patterns found in the wild, and identify
usability issues in existing Android apps.

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques

Author Keywords
App design; design support tools; zero-integration
performance testing

INTRODUCTION
Throughout the mobile app design process, designers seek to
understand the artifacts they build and the experiences those
artifacts confer on users. During ideation, designers attempt
to evaluate the relative merits of potential satisficing designs.
Before design specifications are sent to the engineering team,
designers endeavor to detect usability issues. Once an app is
implemented, designers attempt to optimize user performance
metrics and benchmark them against competitors.

To evaluate the performance of mobile designs, designers
employ a number of testing techniques which generally fall
into one of three categories: A/B [16], usability [21], and
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST 2017, October 22–25, 2017, Quebec City, QC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4981-9/17/10. . . $15.00

DOI: https://doi.org/10.1145/3126594.3126647

Users forget
to select a
unit on this

form

Large user
drop-off on
this screen

21% of users
encountered

this error

Data Entry Screen Error Notification Screen

User Flow Visualization

25% of users
encountered

this error

User Flow Visualization

Figure 1: ZIPT helps designers discover usability issues in existing
Android apps. The user flow visualization shown here summarizes
the paths crowd workers took while trying to “add a cookie to their
daily food log” in MyNetDiary, a calorie counter app. Using the flow
visualization, designers were able to quickly identify a UI screen with
a large user drop-off and its associated usability issues.

analytics-driven testing [7]. While these techniques all pro-
vide value to designers and elevate the practice of design be-
yond guesswork and intuition, the costs associated with opti-
mizing design performance can be steep. A/B and analytics-
driven testing require substantial engineering resources to
build out alternative solutions and instrument them for test-
ing. Manually aggregating unstructured usage data (e.g.,
video and audio streams) acquired during usability testing is
costly and time-consuming [22].

This paper presents a design performance testing approach
that makes it economically feasible to answer the fundamen-
tal question of app design: “given the space of possibilities,
which solution performs best?” This approach is based on
the key observation that, given the millions of mobile apps
available today, it is likely that any UX problem a designer
encounters has been tackled many ways by a number of ex-
isting apps. In this paper, we leverage existing app implemen-
tations to enable comparative testing at scale.

{deka2, zhuang45, cdfranz2, ranjitha}@illinois.edu, jwnichols@google.com, yangli@acm.org
https://doi.org/10.1145/3126594.3126647

This approach is manifest in ZIPT, a zero-integration perfor-
mance testing platform that allows designers to collect de-
tailed design and interaction data over any Android app —
including apps they do not own and did not build — and cor-
relate this data with quantitative metrics and qualitative feed-
back. Analytics and A/B testing tools require access to an
app’s source: at a minimum, a developer must instrument
the app with tracking code to begin collecting data. ZIPT,
in contrast, provides comparable functionality with zero inte-
gration: it requires no access to code, and can be deployed
by any user over any app in the Android store. Unlike usabil-
ity testing platforms, ZIPT automatically captures and aggre-
gates structured interaction data from app usage: therefore,
it can provide user performance data for third-party apps at a
tiny fraction of the cost (around thirty cents a user versus $50
on a usability testing platform like usertesting.com).

ZIPT builds upon prior work by Komarov et al. demonstrat-
ing that crowdsourcing is a viable option for conducting per-
formance evaluations over user interfaces [18]. To evaluate
design performance via ZIPT, designers use a web interface
to specify apps to test, tasks they want crowd workers to per-
form on those apps (e.g., “search for a product, and add it to
the shopping cart”), and survey questions for workers to an-
swer. ZIPT then launches the tests on a crowdsourcing plat-
form, installs and runs the specified apps on a mobile device
farm, and streams the app screens to workers browsers, allow-
ing workers to interact with the app while collecting detailed
interaction and design data in the background. Once data for a
test has been collected, ZIPT computes visualizations that al-
low designers to quickly understand aggregate interaction and
performance metrics (e.g., completion rate, time on task), as
well as inspect individual user traces and screens to identify
usability issues.

To understand the types of design insights that this approach
can generate, we used ZIPT to collect and analyze perfor-
mance data for tasks from 10 different apps, crowdsourc-
ing 15–50 user traces for each one. We used ZIPT to iden-
tify usability issues in three apps by examining both com-
mon and unusual user traces. For three remaining tasks, we
performed a comparative analysis between two popular An-
droid apps whose implementations had significant design dif-
ferences. Results from an informal evaluation with five app
designers demonstrate that ZIPT can be used to understand
the relative performance of interaction patterns found in the
wild, and identify usability issues in existing Android apps
(Figure 1).

BACKGROUND & FORMATIVE STUDY
This work builds on prior work on example-based design. Ex-
amples are used early in the design process for inspiration,
understanding the space of possible solutions, and identify-
ing reusable design patterns [12, 13, 20]. Researchers have
built search engines to help designers find relevant extant de-
signs in a number of domains, including web design [25, 19]
and mobile app flows [10].

Prior to building ZIPT, we conducted interviews with five
Google employees — two interaction designers, two UX re-
searchers, and one UX Engineer — to understand how prac-

titioners leverage examples in their current work, and to dis-
cuss how they might incorporate crowdsourced performance
data on extant mobile designs. Echoing the literature, all par-
ticipants referenced examples early in the design process, es-
pecially for competitive analyses. The interaction designers,
in particular, reported frequently studying existing flows —
logical sequences of screens for performing a task — in com-
petitors’ apps and manually comparing them.

Although mere knowledge of the existence of a design exam-
ple can be useful, the practitioners we interviewed often ex-
pressed a desire to go further and understand how well an ex-
ample performs: whether users can understand a design and
use it as intended to accomplish their goals. When choos-
ing examples to build upon, participants also considered how
easy it would be to communicate the benefits of a particular
design pattern to the rest of their team. All participants indi-
cated that they do not turn to examples enough and wished to
do so more frequently.

All participants expressed interest in crowdsourcing user per-
formance data to evaluate existing design patterns. Partici-
pants offered different ways in which this data might be use-
ful in their design process. P3 observed “if getting such data
was easy, I would ask team members to generate it for pat-
terns they see in the wild before they bring it to me to build
a prototype.” P2 said “I would use such a process to quickly
pinpoint the ’what’ (what works or does not work) and use
other methods to find out the ’why’.” P4 said “I can think of
two ways I would use such data. One is for finding unexpected
behavior and the other is for storytelling.”

To conduct remote usability tests, participants wished to col-
lect performance and interaction data over specific tasks in
apps. They requested aggregate usability metrics such as
completion rate, as well as the average time and number of
interactions required to finish the specified task. To identify
common usage patterns and unexpected behavior, designers
also wished to examine the interaction paths users took to ac-
complish a task. At an app level, designers hypothesized that
it would be useful to collect general user perceptions around
usability and branding.

While participants were generally positive about crowd-
sourced usability testing, they expressed concerns around en-
suring uniform device setup across workers: they were wary
of trusting crowd workers to follow configuration steps such
as software installation. Although participants indicated that
they might use crowdsourcing to test their own apps, several
expressed reservations about inadvertently exposing features
that were not yet public.

INTRODUCING ZIPT

The ZIPT platform comprises three stages (Figure 2). In the
first stage, designers define the scripted usability tests they
want to run over a set of apps. In the second stage, ZIPT
deploys the user-defined tests to crowd workers. Finally, in
the third stage, ZIPT computes and presents designers with
aggregate performance metrics and visualizations based on
the data collected from crowd workers.

http://www.usertesting.com

Test Creation

App

Users

Data Visualizations and Metrics

Aggregate
Data

92% Avg: 48 secs Avg: 12.9

Completion
Rate

Time
Taken

Number of
Interactions

Performance Metrics

Flow Visualization

N
Y

1
2
3
4
5

Feedback
Task Difficulty Used this app before?

App

macys.apk

Data Solicitation

Users
50

Task

Feedback Questions

What is the address of
the closest Macy’s store

to 94102?

Have you used this app
before?

Rate the difficulty of this
task from 1-5.

.

.

.

Data Visualization

Individual
Trace

Task answer: 170 O’Farrell Street Feedback: 170 O’Farrell Street Feedback: Task Difficulty: 3

Aggregate
Data

92% Avg: 48 secs Avg: 12.9

Completion
Rate

Time
Taken

Number of
Interactions

Metrics

Flow Visualization

N
Y

1
2
3
4
5

Feedback
Task Difficulty Used this app before?

Crowd
Workers

User
Interaction

Traces

…

Data Collection

Individual
Trace

Task answer: 170 O’Farrell Street Have you used this app before : No Task Difficulty: 3

Crowd
Workers

User
Interaction

Traces

Data Collection

…Feedback Questions

Have you used this app
before?

Rate the difficulty of this
task from 1-5.. . .

Task
What is the address of

the closest Macy’s store
to 94102?

50
Number of Users

App

Macy’s

Figure 2: An overview of ZIPT: designers define usability tests (left), which are deployed to crowd workers (center). ZIPT computes and presents
designers with aggregate performance metrics and visualizations based on the data collected from crowd workers (right).

Usability Test Creation
ZIPT allows designers to define a usability test by uploading
a set of Android APK files, specifying the number of traces to
be collected, and providing a description of the task for crowd
workers to perform. The description can be open-ended (e.g.,
“browse for music”), or very specific (e.g., “create a playlist
with three songs”). It can be written in plain text or in the
Jade templating language if designers want to customize its
presentation.

Designers can customize tasks in two additional ways. First,
they can construct tasks with built-in verification, requiring
a user to provide an answer to a question in addition to per-
forming a task in the app (e.g., “what is the address of the
store closest to the 94102 zip code?”). Phrasing tasks as ques-
tions can be useful for quickly identifying traces where users
could not complete the task. Second, designers can provide a
specific starting point for crowd workers within the app other
than the home screen. This feature is useful for testing spe-
cific flows that a user would encounter deeper within an app.
Designers specify custom starting points by demonstration.
ZIPT runs the app within the browser, records interaction
paths taken by designers, and replays those interactions be-
fore presenting the app to a crowd worker.

ZIPT requires each crowd worker to self-report whether or
not they successfully completed the specified task. It also al-
lows researchers to add other pre- and post-task questions,
which can be used to collect demographic data for cohort
analysis and qualitative feedback to understand usability and
brand perception. ZIPT supports questions with Likert-scale,
multiple choice, and free-form text answers.

Visualizations and Metrics
Once designers submit a test, ZIPT deploys it on Ama-
zon Mechanical Turk. As crowd workers use the apps, the
platform automatically captures design and interaction data

streams. After collecting the requisite number of user traces,
ZIPT computes aggregate metrics and visualizations, and
presents a results dashboard comprising four types of data:

Individual Traces. ZIPT allows designers to inspect each
crowd worker’s interaction path through the app. User traces
are presented as sequences of screenshots with user interac-
tion annotations. Each trace also contains a user’s answers
to task and feedback questions, if any were specified by the
designer.

Performance Metrics. ZIPT computes and presents three per-
formance metrics: completion rate, time on task, and number
of interactions performed. The performance dashboard visu-
alizes completion rates as pie charts, and the other two met-
rics as histograms. Researchers can interactively select dif-
ferent performance segments in these visualizations to view
their associated traces.

Qualitative Feedback. The dashboard also collates crowd
workers’ answers submitted in the pre- and post-task ques-
tionnaires. It uses bar charts for summarizing Likert-scale
and multiple-choice answers. Like the performance visu-
alizations, designers can select segments in these charts to
inspect corresponding traces. For example, designers can
quickly identify and inspect all traces where crowd work-
ers reported high task difficulty to uncover potential usability
bugs.

Flow Visualization. ZIPT presents interactive flow visualiza-
tions to help designers compare and contrast the different
paths taken by users to accomplish tasks. These visualiza-
tions build on prior work on representing user flows in mo-
bile apps with Sankey flow diagrams [14]. Color-coded nodes
representing different screens in a user interaction trace are
arranged sequentially along the horizontal axis. The nodes
in the visualization are connected by bands whose thickness
is directly proportional to the number of users who took the
path defined by its node endpoints. These diagrams can allow

designers to quickly understand aggregate interaction data,
as well as inspect individual screens to identify usability is-
sues. For example, designers can interact with the nodes to
view screenshots, and with the bands to see user interaction
between two screens. Additionally, a designer can create a
flow by demonstration in an app and use it to highlight paths
of interest in the visualization. For example, by defining a
golden trace for a task — the intended path a user should
take to complete a task — and highlighting this path in the
diagram, a designer can quickly determine the screens that
cause the most confusion and are most likely to prevent users
from completing the task.

Implementation
To ensure that all crowd workers use apps under identical
conditions without having to install any software on their de-
vices, ZIPT uses a web-based streaming approach for collect-
ing data from mobile apps. Apps run in a controlled envi-
ronment on a mobile device farm, and are streamed to client
devices through the browser. This streaming approach has
been used in recent systems including ERICA for mining mo-
bile app designs [10] and MobiPlay for implementing record
and replay systems for app testing [23], and been piloted by
Google for mainstream Android app usage [2].

We modeled ZIPT’s web-based app streaming implementa-
tion after ERICA [10]. Apps are run on a set of Android
devices connected to a server that hosts the ZIPT web appli-
cation. The web application continuously streams the phone
screens as compressed JPEG images. When users interact
with these images in their browser, the front-end web ap-
plication captures these interactions and sends them to the
phones via the server. When an app’s screen changes as a
result of these interactions, users see the updated screens in
their browser with a slight delay. ZIPT supports diverse in-
teractions including tapping, scrolling, two finger pinch-and-
zoom, and keyboard text entry.

In contrast to ERICA and MobiPlay, where app streaming oc-
curs over a local network, ZIPT must be performant over the
public Internet. As a result, ZIPT uses a low frame rate (5–10
frames per second) and high-compression ratio to minimize
bandwidth requirements. To produce acceptable latencies,
ZIPT only recruits crowd workers within the US (where the
server is located). In addition, ZIPT logs the incurred latency
for each user interaction, and can filter out traces impeded by
network performance.

Like ERICA [10], ZIPT logs screenshots, view hierarchies,
and interactions produced during usage, and combines them
to produce interaction traces. ZIPT computes completion
rates based on user-reported data, and the other two met-
rics — time on task and number of user interactions — di-
rectly from the interaction traces. When examining individ-
ual traces, a designer can fix any mislabeled traces, where a
user incorrectly self-reported the completion of a task. ZIPT
factors in network and server-to-phone communication laten-
cies when computing time on task for a more accurate esti-
mate. In the future, ZIPT can be extended with mechanisms
for outlier detection [18] or data validation [8, 6, 24, 24, 17,
11] as necessary.

To construct flow visualizations, ZIPT automatically com-
putes the set of screens that represent the same UI state and
merges them together into a single node. To do so, ZIPT
employs the content-agnostic similarity heuristic presented in
Deka et al. [9], which compares screens based both on their
structural and visual properties. Designers can also manually
merge and split nodes to fine-tune the visualization.

ZIPT IN ACTION
We used ZIPT to identify usability issues in — and compare
the performance of — a number of popular apps. In this sec-
tion, we present a series of case studies to demonstrate how
the data collected and visualized by ZIPT can provide novel
design insights for apps used by millions of people. For these
case studies, we selected 10 popular Android apps that tar-
get a diverse set of day-to-day consumer activities. Via ZIPT,
we crowdsourced performance data over tasks central to these
apps, collecting between 15–50 user traces for each task. We
paid Amazon Mechanical Turk workers $0.30 for each trace
and used a server backed by three Android devices, which
allowed us to collect approximately 15 traces per hour.

Identifying Usability Issues
ZIPT demonstrates that combining aggregate flow and indi-
vidual trace visualizations allows designers to quickly iden-
tify potential usability problems in apps. Researchers can de-
tect usability problems by examining both common and un-
usual user traces. For example, if many users drop off at a
common node in the flow visualization, this may signify a us-
ability problem in the critical path of the task. On the other
hand, if most users successful follow the golden path but a
small number are unable to complete the task, this may in-
dicate a usability issue in a part of the app that users are not
able to easily recover from. We encountered both cases in the
user traces we crowdsourced with ZIPT.

In one test, we asked crowd workers to find the next train’s de-
parture time from a specific station on the Transit app, which
provides real-time information updates on public transporta-
tion systems. The easiest way to complete the task is to search
for the station using the search bar at the top of the app’s home
screen. From the flow visualization, we observed that only
21% of users (6 out of 28) initially attempted to search for
the answer (Figure 3). We hypothesize that more users would
have tried the search bar if it was more visually prominent:
many search bars have a box around them or a high contrast
line underneath them.

In another test, we used ZIPT to ask crowd workers to “add
a cookie to your food log” on MyNetDiary, an app used to
track calories. From the resultant flow visualization, we no-
ticed a large user drop-off on the data entry UI (Figure 1), and
that 21% (5 out of 24) of users encountered an error on the
next screen. We discovered that the error occurs when a unit
(oz, cookie, gram) is not selected on the data entry screen.
We hypothesize that the unit options are not easily recogniz-
able as radio buttons, and positioning them to the side of the
quantity field may have exacerbated the issue since users are
accustomed to scanning forms vertically rather than horizon-
tally [1].

These users did not interact
with the search bar.

Only these users started by
using the search bar.

Figure 3: 76% percent of Tran-
sit app users did not initially use
the search bar to find the depar-
ture time of the next train.

Same text in search bar.

Different Context

Searching Over Places Searching Over Lists Same text in search bar

Different search context

Searching over listsSearching over places

Figure 4: The Foursquare app presents search bars
with different scope based on which tab is selected.
However, the placeholder text does not change when
tabs are switched to indicate a scope change, which
can confuse users.

User interacted with Pinterest Visual Search Icon
trying to pin an image to a board

Icons near image
corners generally open

menus in Android

Inspection of an outlier
revealed potential user

confusion

Time on Task

Number of
Users

Figure 5: We discovered a potential usability issue
on Pinterest by inspecting an outlier’s trace. After
spending considerable time on the task, this user
was unable to add an image to a board because the
new visual search icon (white circle) behaved in an
unexpected way.

By examining outliers — users who fail to complete a task
after spending considerable time on it — ZIPT makes it pos-
sible to uncover usability issues that are not directly related
to the specified task. For instance, we asked crowd workers
to find a specific restaurant’s phone number on Foursquare, a
social app for discovering places. Most crowd workers easily
completed the task; however, we noticed that one user became
stuck searching for the specified restaurant in the “lists” tab.
Foursquare uses scoped search, a design pattern where search
bars on different screens search over different types of enti-
ties. On Foursquare, the “search” tab supports search over
places, while the “lists” tab supports search over user lists
(Figure 4). Although scoped search is a popular design pat-
tern, when the scope is not communicated clearly, it can lead
to usability problems [3]. In this app, even though the scope
changed between tabs, the placeholder text in the search box
remained the same.

In another test, ZIPT helped uncover a usability issue on
Pinterest, a social, visual inspiration app. Pinterest recently
added a visual discovery feature that allows users to quickly
search for similar images by clicking on a white circular icon
on the bottom right corner of an image (Figure 5) [5]. We
asked crowd workers to “pin an image to a board,” and then
identified and inspected the trace of an outlier who had fix-
ated on the visual discovery icon, tapping it several times on
different images before abandoning the task. Commonly, an

icon placed on an entity such as an image brings up a menu
for additional actions that can be performed on it: we suspect
that other users will have to “unlearn” their expected behavior
on the Pinterest app.

Analyzing Comparative Performance
ZIPT affords designers — for the first time — the ability to
perform comparative analysis at scale. During ideation, de-
signers can leverage existing implementations to understand
the relative performance of different design patterns. After
implementation, ZIPT allows designers to benchmark against
competitors’ apps. We demonstrate how ZIPT’s quantitative
and qualitative performance data can be combined to conduct
comparative performance analyses. Moreover, researchers
can inspect flow visualizations and individual traces to better
understand why these performance differences exist, uncov-
ering usability issues, user expectations, and general trends
in user behavior.

Finding Store Locations in Shopping Apps
Big-box retailer apps use different navigation patterns such as
hamburger icons with flyout menus and tabbed navigation to
expose their main capabilities. To understand the relative per-
formance of these patterns, we analyzed how users perform
store location searches on two popular retail apps — Macy’s
and Best Buy. Finding a specific store location is an important
feature of these apps, since it directly impacts revenue.

Macy’s allows one way to find a store by ZIP code

Best Buy allows two ways to complete the same task

Inspecting the cause of an incorrect answer highlighted a potential
issue with the search functionality in the Best Buy app

incorrect answer

Best Buy

Macy’s

The task was harder on Best
Buy than on Macy’s

Best Buy

Users who did not take the
designer anticipated golden
paths in the Best Buy app

Macy’s

3 4

5

1

2

Figure 6: We asked crowd workers to find the address of a store location closest to a specified zip code on the Macy’s and Best Buy apps.
The Macy’s app uses a hamburger icon and flyout menu navigation, whose sub-menu contains the store locator. The Best Buy app uses tabbed
navigation and offers two ways to accomplish the task. On average, users reported that the task was more difficult to perform on the Best Buy app
than on Macy’s. The hamburger icon was a more familiar design idiom than tabbed navigation with scoped search.

Adding event with “Add” buttonAdding event by interacting with time slots

FAB

Plus
Sign

Simple Calendar

DigiCal

For both apps, far more users
start out by interacting

directly with the time slots
than by using the add icon.

A B

A

A

B

B

Figure 7: Both Simple Calendar and DigiCal provide two ways for users to add an event to their calendar: directly interacting with slots on the
calendar or through an action button. Although the former strategy is slower than the latter, a larger percentage of users in both apps started the
task using direct time slot manipulation.

Spotify

Did you have any trouble completing
the task? If so, briefly explain.

Yeah, I couldn’t figure out how to
create a playlist, or add a song…

Yes, I could not find the button to
start a new playlist

Could not find create playlist

Extra answer It wasn't clear at all how to
create a playlist. The way the app does it is
way too indirect (go to a song and add to a
playlist, tehn create a new one) there is no
direct option.

A user turned to Youtube Music’s
help menu

Youtube
Music

User feedback highlighted main
difficulties

81%

88.6%

97.6%

Task Completion Rates

Figure 8: Feedback from the crowd explained why the completion rate of “adding two songs to a new playlist” was lower for Youtube Music than
for Spotify. Youtube Music did not support creation of empty playlists, a capability expected by users.

We used ZIPT to ask crowd workers “what is the address of
the store to closest to the 94102 zip code?” We deployed
the test for both the Macy’s and Best Buy apps and collected
31 and 35 traces, respectively. In the Macy’s app, there is
only one golden path for answering the question: through a
sub-menu in the flyout menu triggered by the hamburger icon
(Figure 6). The Best Buy app, in contrast, offers two ways
to perform this task. From the tabbed navigation, users can
select the “Stores” tab and search for the specified ZIP code.
Users can also click on the “Closest Store” location promi-
nently displayed on the home screen and change the ZIP code
to find the same information.

When we examined the data collected by ZIPT, we noticed
that the task completion rate on the Macy’s app (95.7%) was
significantly higher than on Best Buy (82.5%). Moreover, on
average, users reported that the task was harder to perform
on the Best Buy app than on Macy’s. By examining the user
traces where workers submitted incorrect answers to the task
question, we noticed one possible cause of confusion: users
did not understand the Best Buy search bar’s scope, which
changes depending on the selected tab. Although Best Buy
does change the search bar’s placeholder text, some users still
tried searching for stores on the “Home” tab, which returned

zero results. Interestingly, 77% (24 out of 31) of Macy’s app
users took the correct first step of opening the flyout menu and
following the design scent to find the store locator. Perhaps
sticking to a familiar design idiom — the hamburger icon —
is more effective than having custom navigation.

Adding Events in Calendar Apps
Creating and adding events to a calendar is one of the most
common tasks performed by users on scheduling apps. These
apps generally provide action buttons on the home screen to
support this essential feature. We picked two calendar apps
— Simple Calendar and DigiCal — that offer slightly differ-
ent action buttons. To study their relative performance, we
created and deployed a ZIPT test for both apps, asking crowd
workers to “add a new event to a calendar.” We collected 24
traces for Simple Calendar app, and 18 traces for DigiCal.

Simple Calendar uses a distinct floating action button (FAB)
that appears on the bottom right of the main screen (Figure 7).
FABs are a popular design pattern and are part of the Android
material design library [4]. They are recommended for high-
lighting promoted actions in an app and are frequently used to
create new items (e.g., when composing a new email). Digi-
Cal, in contrast, uses a less distinct +-shaped icon in the top
action bar. Both apps allow users to complete the task by
directly interacting with a time slot on the calendar, which re-
quires two interactions to reach the screen where event details
can be entered. By interacting with the action button, users
can reach this screen in one step.

In both apps, we observed that most users attempted the task
by directly manipulating the time slots on the calendar. This
behavior is easy to spot in flow visualizations (Figure 7).
Even though the FAB is high contrast and a popular pattern,
only 17% (4 out of 24) of users interacted with it in Simple
Calendar. The differences in action buttons had little effect on
behavior, since users have a strong habitude of manipulating
calendar events directly.

Creating Playlists in Music Apps
Most music service apps support the creation of playlists for
curating collections of songs. We studied the relative user
performance of playlist creation flows in two popular mu-
sic apps: Spotify and YouTube Music. We deployed a task
on ZIPT asking crowd workers to “add two songs to a new
playlist that you create,” and collected 41 user traces for Spo-
tify and 31 for YouTube Music.

We observed a higher task completion rate on Spotify than
Youtube Music (92.9% versus 81.5% with p=0.17) (Fig-
ure 8). Worker feedback on the task indicated that users
were confused by being unable to create empty playlists on
YouTube Music. One individual trace revealed that a crowd
worker even used the help functionality to learn how to create
playlists in YouTube Music.

By inspecting the apps and the collected traces, we discovered
that Spotify allows users to add a song to a new playlist in two
ways. Users can “add to playlist” on a song and then specify

that it is going to be part of a new playlist. Alternatively,
they can “create new playlist” from a screen for managing
playlists, and then navigate to a song and add it. Youtube
Music does not support the creation of empty playlists, which
seems to be an expected capability.

INFORMAL EVALUATION
We conducted user interviews to gauge the usefulness of
ZIPT and to understand how the system might be integrated
into the design process. We recruited four Google employees
for the study: three of them were participants in our formative
study (P3, P4, and P5), and the fourth (P6) was another UX
researcher. The interviews lasted one hour and participants
were compensated $25.

Each interview comprised a system overview (30 minutes),
system walkthrough (10 minutes), and discussion (20 min-
utes). During the system overview, we introduced the goals
of the system and then demonstrated its features using exam-
ples from the case studies described in the previous sections.
During the system walkthrough, we let each participant use
the system to explore the data collected for the MyNetDiary
calorie counter app. We then started a discussion around how
each participant might incorporate the ZIPT system and data
into their workflow.

After the interview, we sent participants a survey with 11
questions addressing the overall usefulness of the system and
data presentation. The questions elicited responses on a 7-
point Likert-scale from strongly disagree (1) to strongly agree
(7). Three of the four participants completed the survey. We
summarize the questions and their responses in Table 1.

Question Avg (S.D.)
Q1 The data produced by this system would be

helpful in the app design process.
6.0 (0.0)

Q2 This system would help me understand what
works well for design patterns that I see in
existing apps.

6.0 (1.0)

Q3 This system would help me find unexpected
user behavior.

6.0 (1.0)

Q4 This system would help me find usability
bugs.

6.3 (1.2)

Q5 The data produced by this system would help
me communicate the merits and demerits of
a design pattern to my team members.

6.3 (0.6)

Q6 The metrics overview was helpful. 5.7 (1.2)
Q7 The flow visualization was helpful. 6.3 (1.2)
Q8 The user feedback was helpful. 6.0 (1.0)
Q9 The user interface was easy to use and learn. 6.0 (0.0)
Q10 I believe that the app "MyNetDiary - Calorie

Counter" has a usability issue.
7.0 (0.0)

Q11 I would gather performance data for existing
apps more often with this system.

6.7 (0.6)

Table 1: Participant feedback about the overall usefulness of ZIPT
and its different features.

Potential Uses Cases
Overall, participants reported that ZIPT would be helpful in
their design process (Q1–Q5). From the discussions, it was
clear that participants valued the potential comparative use
cases. P3 would use ZIPT to understand “if reusable com-
ponents in different apps share similar usability issues.” P5
was interested in using ZIPT to benchmark his own apps
against competitors’: “I think it fits nicely with how design-
ers think about problems...we think a lot about critical user
journeys...this is a way for us to focus on those journeys and
benchmark them against similar apps.” He added, “if adding
a record for food takes ten seconds on my competitor’s app,
that would be my target...if I have a set of core tasks that can
be matched up with those in other apps, then I can understand
how well I am doing.”

Participants found the aggregate data views were useful (Q6-
Q8) for both identifying user problems, and for understanding
why they occur. P3 commented “I really like that you can
state your hypothesis about what the golden paths are and
then you check to see if you were correct...and the ability to
drill down into the flows where it didn’t happen and see in the
traces where the derailing was, is very powerful.” Similarly,
during the demonstration of the feedback view, P4 remarked,
“when you first showed me the task creation interface, I was
dismissive of the open text fields, but when you are trying to
come up with a theory of why things are going wrong, just
skimming those things can be very useful.”

Perceived Benefits
Participants reported that they would use a system like ZIPT
to collect performance data for existing apps more often
(Q11). P4 commented that “even small improvements that
reduce the cost of user research have a big impact on peo-
ples willingness to do research.” Participants appreciated that
ZIPT reduced the monetary and engineering cost of testing
and user research. P5 remarked that “it is way cheaper than
usertesting.com.” He added, “the benefit (compared to build-
ing prototypes) is that you don’t have to create parts of the
app that do not relate to the features that you want to test...like
creating logins and realistic content...you can save time by
using existing applications since all those things are already
there.”

Participants realized that the structured data collection made
the testing platform flexible and general. P6 stated, “you
could do a UI evaluation; or an interaction evaluation; or
a component evaluation; each of those could benefit from an
approach like this, especially once you have all the data, you
can ask arbitrary questions of that data.” P5 viewed the abil-
ity to produce a “flow visualization using the view hierarchy”
as ZIPT’s unique advantage. Participants also felt that the
structured representation of data was complete. While view-
ing an individual trace, P4 remarked, “it seems there is very
little that you lose from having an over-the-shoulder video
camera.”

Generated Design Insights
After using ZIPT for ten minutes to explore the user data for
MyNetDiary, all participants reported that it had at least one
usability issue (Q10, µ = 7.0). P3 and P6 noticed the same

issue we identified: the visual design of the data entry screen
(Figure 1) did not clearly communicate that “something else
was needed” (P6).

Participants identified additional usability issues as well. P4
and P5 mentioned that it was an “anti-pattern” that the er-
ror message was a global pop-up and not attached to the of-
fending elements. After inspecting multiple traces, P3 noted,
“there are a number of people here who expect that the flow
should go to the bottom right when they are done instead of
the save button in the top right.” Participants also sponta-
neously generated solutions to address some of these issues,
including preselecting one of the options (P6, P3), restructur-
ing the data entry as a two step process (P5), changing the
component used for selection (P5), and modifying the layout
of the screen to be diagonal (P3).

Participants felt comfortable generalizing from specific ex-
amples to broader design insights. P3 explained, “I am not
a trained interaction designer, but even with the experience
I have, I can look at the one problem case and I can infer
from that what the general problem is”. Similarly, when we
mentioned the case of users trying to create empty playlists
in Youtube Music, P4 generalized that “people like to think of
containers as things.” He named two specific products where
he had seen similar user behavior in the past and added, “you
want to be able to have an empty thing to put things in...its
how we think of stuff. You want to support the object-first use
case where you start the collection from an object, but that’s
not the first way people think of when you ask them to create
the thing.”

DISCUSSION AND FUTURE WORK
The case studies described in this paper illustrate that ZIPT
can provide both the detailed data of usability testing and the
scale of analytics-driven and A/B testing. ZIPT allows de-
signers to combine quantitative and qualitative data to iden-
tify problems, quantify their magnitude, and gain insight into
their causes. In the future, extending ZIPT to support more
sophisticated statistical techniques could allow designers to
specify a maximum budget and desired confidence interval
for key performance indicators, instead of requiring them to
mandate the number of user traces to collect.

More broadly, we envision ZIPT becoming part of an inte-
grated mobile design exploration platform, where designers
can search for examples using tools like the flow search sys-
tem from Deka et al. [10], and then invoke ZIPT to understand
their performance through a series of inexpensive, targeted
experiments. Observing how designers use ZIPT under real-
istic conditions would also help improve its task specification
and data-analysis interfaces.

Although it was not designed to support this use case, ZIPT
could also be an interesting platform for evaluating one’s own
apps. Initially, many app development teams do not have the
resources to conduct usability testing, or the users to spend on
A/B testing [15]. ZIPT could afford these teams the ability to
iterate on their app and get low-cost, low-overhead usability
feedback. In the words of one of our participants, “if it was
just me, and it was my startup, and this was my application,

after seeing this data, I would at least change the position of
the save button and see if that makes the flow any better. I
would be quite eager to do a couple of iterations until I get
something that is as frictionless as possible.”

ACKNOWLEDGMENTS
We thank the reviewers for their helpful comments and sug-
gestions; the Google designers, researchers, and engineers
who participated in our studies; and the crowd workers who
completed the ZIPT tasks. This work was supported in part
by a Google Faculty Research Award.

REFERENCES
1. Web form design guidelines: an eyetracking study,

2009. https://www.cxpartners.co.uk/our-thinking/
web forms design guidelines an eyetracking study/.

2. Introducing Android Instant Apps, 2010.
http://android-developers.blogspot.com/2016/05/
android-instant-apps-evolving-apps.html.

3. 20 Best Practices for Mobile App Search, 2017.
https://www.raywenderlich.com/153260/20-best-
practices-for-mobile-app-search.

4. Material design for Android, 2017.
https://developer.android.com/design/material/.

5. Search outside the box with new Pinterest visual
discovery tools, 2017.
https://blog.pinterest.com/en/search-outside-
box-new-pinterest-visual-discovery-tools.

6. Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B.,
Ackerman, M. S., Karger, D. R., Crowell, D., and
Panovich, K. Soylent: a word processor with a crowd
inside. Communications of the ACM 58, 8 (2015),
85–94.

7. Cardello, J. Usability Metrics, 2013. https:
//www.nngroup.com/articles/usability-metrics/.

8. Chang, S., Dai, P., Hong, L., Sheng, C., Zhang, T., and
Chi, E. H. Appgrouper: Knowledge-based interactive
clustering tool for app search results. In Proc. IUI
(2016).

9. Deka, B., Huang, Z., Franzen, C., Hibschman, J.,
Afergan, D., Li, Y., Nichols, J., and Kumar, R. Rico: A
mobile app dataset for building data-driven design
applications. In Proc. UIST (2017).

10. Deka, B., Huang, Z., and Kumar, R. ERICA: Interaction
mining mobile apps. In Proc. UIST (2016).

11. Dow, S., Kulkarni, A., Klemmer, S., and Hartmann, B.
Shepherding the crowd yields better work. In Proc.
CSCW (2012).

12. Eckert, C., and Stacey, M. Sources of inspiration: A
language of design. Design Studies 21, 5 (2000),
523–538.

13. Eckert, C., Stacey, M., and Earl, C. References to past
designs. Studying Designers 5 (2005), 3–21.

14. Grossauer, C., Holzmann, C., Steiner, D., and Guetz, A.
Interaction visualization and analysis in automation
industry. In Proceedings of the 14th International
Conference on Mobile and Ubiquitous Multimedia,
ACM (2015), 407–411.

15. Iitsuka, S., and Matsuo, Y. Website optimization
problem and its solutions. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM (2015), 447–456.

16. King, R., Churchill, E., and Tan, C. Designing with
Data. OReilly Media, 2017.

17. Kittur, A., Nickerson, J. V., Bernstein, M., Gerber, E.,
Shaw, A., Zimmerman, J., Lease, M., and Horton, J. The
future of crowd work. In Proc. CSCW (2013).

18. Komarov, S., Reinecke, K., and Gajos, K. Z.
Crowdsourcing performance evaluations of user
interfaces. In Proc. CHI (2013).

19. Kumar, R., Satyanarayan, A., Torres, C., Lim, M.,
Ahmad, S., Klemmer, S. R., and Talton, J. O.
Webzeitgeist: Design mining the web. In Proc. CHI
(2013).

20. Miller, S. R., and Bailey, B. P. Searching for inspiration:
An in-depth look at designers example finding practices.
In ASME 2014 International Design Engineering
Technical Conferences and Computers and Information
in Engineering Conference (2014).

21. Nielsen, J. Finding usability problems through heuristic
evaluation. In Proc. CHI (1992), 373–380.

22. Nielsen, J. Usability Metrics, 2001. https:
//www.nngroup.com/articles/usability-metrics/.

23. Qin, Z., Tang, Y., Novak, E., and Li, Q. Mobiplay: A
remote execution based record-and-replay tool for
mobile applications. In Proceedings of the 38th
International Conference on Software Engineering,
ACM (2016), 571–582.

24. Quinn, A. J., and Bederson, B. B. Human computation:
a survey and taxonomy of a growing field. In
Proceedings of the SIGCHI conference on human
factors in computing systems (2011).

25. Ritchie, D., Kejriwal, A. A., and Klemmer, S. R. d. tour:
Style-based exploration of design example galleries. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology (2011),
165–174.

https://www.cxpartners.co.uk/our-thinking/web_forms_design_guidelines_an_eyetracking_study/
https://www.cxpartners.co.uk/our-thinking/web_forms_design_guidelines_an_eyetracking_study/
http://android-developers.blogspot.com/2016/05/android-instant-apps-evolving-apps.html
http://android-developers.blogspot.com/2016/05/android-instant-apps-evolving-apps.html
https://www.raywenderlich.com/153260/20-best-practices-for-mobile-app-search
https://www.raywenderlich.com/153260/20-best-practices-for-mobile-app-search
https://developer.android.com/design/material/
https://blog.pinterest.com/en/search-outside-box-new-pinterest-visual-discovery-tools
https://blog.pinterest.com/en/search-outside-box-new-pinterest-visual-discovery-tools
https://www.nngroup.com/articles/usability-metrics/
https://www.nngroup.com/articles/usability-metrics/
https://www.nngroup.com/articles/usability-metrics/
https://www.nngroup.com/articles/usability-metrics/

	Introduction
	Background & Formative Study
	Introducing ZIPT
	Usability Test Creation
	Visualizations and Metrics
	Implementation

	ZIPT in Action
	Identifying Usability Issues
	Analyzing Comparative Performance
	Finding Store Locations in Shopping Apps
	Adding Events in Calendar Apps
	Creating Playlists in Music Apps

	Informal Evaluation
	Potential Uses Cases
	Perceived Benefits
	Generated Design Insights

	Discussion and Future Work
	Acknowledgments
	REFERENCES

